Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.
The EF locations coincided with the areas where the tensile, shear, or torsion force was exerted. Therefore, the dentist should give extra care and attention to these specific areas of enamel after debonding. The sizes and incidences of EF produced by these three debonding modes showed no significant difference. Thus, clinically, when the sizes and incidences of produced EF are considered, it should not matter which of these three exerting forces is used to debond a bracket.
De Quervain's tenosynovitis is often observed on repetitive flexion of the thumb. In the clinical setting, the conservative treatment is usually an applied thumbspica splint to immobilize the thumb. However, the traditional thumbspica splint is bulky and heavy. Thus, this study used the finite element (FE) method to remove redundant material in order to reduce the splint's weight and increase ventilation. An FE model of a thumbspica splint was constructed using ANSYS9.0 software. A maximum lateral thumb pinch force of 98 N was used as the input loading condition for the FE model. This study implemented topology optimization and design optimization to seek the optimal thickness and shape of the splint. This new design was manufactured and compared with the traditional thumbspica splint. Ten thumbspica splints were tested in a materials testing system, and statistically analyzed using an independent t test. The optimal thickness of the thumbspica splint was 3.2 mm. The new design is not significantly different from the traditional splint in the immobilization effect. However, the volume of this new design has been reduced by about 35%. This study produced a new thumbspica splint shape with less volume, but had a similar immobilization effect compared to the traditional shape. In a clinical setting, this result can be used by the occupational therapist as a reference for manufacturing lighter thumbspica splints for patients with de Quervain's tenosynovitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.