a b s t r a c tThis paper presents a general approach to predict the contact fatigue life of the gears in the drive-train system of a wind turbine under dynamic conditions. A simplified predictive pitting model that estimates service lives is presented and validated by comparisons with published experimental evidence. Finally, the predictive model is used to estimate the contact fatigue lives of the sun gear and planetary gears in the drive-train system of the National Renewable Energy Laboratory's 750 kW land-based wind turbine based on time domain simulations. The occurrence frequencies of different wind speeds are described by the generalized gamma distribution. The time series of the torques in the main shaft are obtained from a global dynamic response analysis of the wind turbine. The time series of the gear contact forces is obtained from a dynamic analysis of the gearbox using multi-body simulation. The two-parameter Weibull distribution, the three-parameter Weibull distribution, and the generalized-gamma distribution are used to fit the long-term probabilistic distribution of the gear tooth contact pressures. The case study shows the validity of the approach presented in this paper.
This paper studies the drivetrain dynamics of a 750 kW spar-type floating wind turbine (FWT). The drivetrain studied is a high-speed generator, one-stage planetary, two-stage parallel and three-point support type. The response analysis is carried out in two steps. First, global aero-hydro-elastic-servo time-domain analyses are performed using HAWC2. The main shaft loads, which include the axial forces, shear forces and bending moments, are obtained in this integrated wind-wave response analysis. These loads are then used as inputs for the multi-body drivetrain time-domain analyses in SIMPACK. The investigations are largely based on comparisons of the main shaft loads and internal drivetrain responses from 1 h simulations. The tooth contact forces, bearing loads and gear deflections are the internal drivetrain response variables studied. The comparisons are based on the mean values, standard deviations and maximum values extrapolated using a 10 5 up-crossing rate. Both operational and parked conditions are considered. The investigation consists of three parts. First, the responses are compared between the FWT and its equivalent land-based version. Second, the contributions from the main shaft loads (shear forces, axial forces and bending moments) and nacelle motions are investigated individually. Third, an improved four-point support (4PT) system is studied and compared against the original three-point support system for the FWT. The results show that there are general increases in the standard deviations of the main shaft loads and internal drivetrain responses in the FWT. In addition, these increases are a result of the increased main shaft loads in the FWT, especially the non-torque loads. Last, the 4PT system, when applied to a FWT drivetrain, significantly reduces the tooth contact forces and bearing loads in the low-speed stage, but this result comes at the expense of increased main bearing radial loads.
The Gearbox Reliability Collaborative has conducted extensive field and dynamometer test campaigns on two heavily instrumented wind turbine gearboxes. In this study, the load sharing behaviour between six bearings in the planetary stage is described using a combined approach of measurement and simulation. First, planet-bearing data are analysed to characterise planetary stage behaviour in different environments. Second, a method is described for integrating the measured responses of the planetary stage into an advanced model of the bearing life that significantly changes the life prediction. Third, a sensitivity study of the planet bearings is conducted using multibody gearbox models. Various levels of gearbox flexibility and different planet assembly fits are investigated and compared with experimental observations. Measurements in the dynamometer and field show that bearing loading differs significantly between the six planet bearings. The relative loading behaviour of the planetary stage bearings is directly influenced by boundary conditions of the planet carrier pins. Assembly differences between two identically designed gearboxes cause different load sharing behaviour. Simulations are used to quantify the effect of different component flexibilities. Reduced order models are developed to accurately predict bearing loading in a cost-efficient manner.
There have been some recent efforts to numerically model and analyse the wind turbine gearbox. To date, much of the focus has been on increasing model refinement and demonstrating its added value. This paper takes a step back and examines in detail the modelling and analysis of an important wind turbine gearbox component, the planet carrier, in a multi‐body setting. The planet carrier studied in this work comes from the 750 kW wind turbine gearbox used in the National Renewable Energy Laboratory's Gearbox Reliability Collaborative project. The study is performed in two parts. First, the influence of subcomponents mated to the planet carrier in the gearbox assembly is investigated in detail. These components consist of the planet pins, bearings and the main shaft. In the second part of the study, the flexible body modelling of the planet carrier for use in multi‐body simulations is examined through the use of condensed finite element and multi‐body simulation models. Both eigenvalue analyses and time domain simulations are performed. Comparisons are made regarding the eigenfrequencies, categorized mode shapes and the maximum and minimum planet carrier rim deflections from the time domain simulations. The mode shapes are categorized into seven distinct deformation patterns. An actual load case from the dynamometer tests, a 100% rated torque loading, is used in the time domain simulations. The results from this comprehensive study provide an insight into the proper modelling of a wind turbine planet carrier in a multi‐body setting. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.