Introduction Digital health is rapidly expanding due to surging healthcare costs, deteriorating health outcomes, and the growing prevalence and accessibility of mHealth and wearable technology. Data from Biometric Monitoring Technologies (BioMeTs), including mobile Health and wearables, can be transformed into digital biomarkers that act as indicators of health outcomes and can be used to diagnose and monitor a number of chronic diseases and conditions1. There are many challenges facing digital biomarker development, including a lack of regulatory oversight, limited funding opportunities, general mistrust of sharing personal data, and a shortage of open source data and code. Further, the process of transforming data into digital biomarkers is computationally expensive, and standards and validation methods in digital biomarker research are lacking. Methods In order to provide a collaborative, standardized space for digital biomarker research and validation, we present the first comprehensive, open source software platform for end-to-end digital biomarker development: The Digital Biomarker Discovery Pipeline (DBDP). Results Here we detail the general DBDP framework as well as three robust modules within the DBDP that have been developed for specific digital biomarker discovery use cases. Conclusions The clear need for such a platform will accelerate the DBDP’s adoption as the industry standard for digital biomarker development and will support its role as the epicenter of digital biomarker collaboration and exploration.
The dynamic time warping (DTW) algorithm is widely used in pattern matching and sequence alignment tasks, including speech recognition and time series clustering. However, DTW algorithms perform poorly when aligning sequences of uneven sampling frequencies. This makes it difficult to apply DTW to practical problems, such as aligning signals that are recorded simultaneously by sensors with different, uneven, and dynamic sampling frequencies. As multi-modal sensing technologies become increasingly popular, it is necessary to develop methods for high quality alignment of such signals. Here we propose a DTW algorithm called EventDTW which uses information propagated from defined events as basis for path matching and hence sequence alignment. We have developed two metrics, the error rate (ER) and the singularity score (SS), to define and evaluate alignment quality and to enable comparison of performance across DTW algorithms. We demonstrate the utility of these metrics on 84 publicly-available signals in addition to our own multi-modal biomedical signals. EventDTW outperformed existing DTW algorithms for optimal alignment of signals with different sampling frequencies in 37% of artificial signal alignment tasks and 76% of real-world signal alignment tasks.
Background: Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches, wearables, and ingestible and implantable sensors are increasingly used by individuals and clinicians to capture the health outcomes or behavioral and physiological characteristics of individuals. Time series classification (TSC) is very commonly used for modeling digital clinical measures. While deep learning models for TSC are very common and powerful, there exist some fundamental challenges. This review presents the non-deep learning models that are commonly used for time series classification in biomedical applications that can achieve high performance. Objective: We performed a systematic review to characterize the techniques that are used in time series classification of digital clinical measures throughout all the stages of data processing and model building. Methods: We conducted a literature search on PubMed, as well as the Institute of Electrical and Electronics Engineers (IEEE), Web of Science, and SCOPUS databases using a range of search terms to retrieve peer-reviewed articles that report on the academic research about digital clinical measures from a five-year period between June 2016 and June 2021. We identified and categorized the research studies based on the types of classification algorithms and sensor input types. Results: We found 452 papers in total from four different databases: PubMed, IEEE, Web of Science Database, and SCOPUS. After removing duplicates and irrelevant papers, 135 articles remained for detailed review and data extraction. Among these, engineered features using time series methods that were subsequently fed into widely used machine learning classifiers were the most commonly used technique, and also most frequently achieved the best performance metrics (77 out of 135 articles). Statistical modeling (24 out of 135 articles) algorithms were the second most common and also the second-best classification technique. Conclusions: In this review paper, summaries of the time series classification models and interpretation methods for biomedical applications are summarized and categorized. While high time series classification performance has been achieved in digital clinical, physiological, or biomedical measures, no standard benchmark datasets, modeling methods, or reporting methodology exist. There is no single widely used method for time series model development or feature interpretation, however many different methods have proven successful.
Background Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches, wearables, ingestibles, and implantables are increasingly used by individuals and clinicians to capture health outcomes or behavioral and physiological characteristics of individuals. Although academia is taking an active role in evaluating digital sensing products, academic contributions to advancing the safe, effective, ethical, and equitable use of digital clinical measures are poorly characterized. Objective We performed a systematic review to characterize the nature of academic research on digital clinical measures and to compare and contrast the types of sensors used and the sources of funding support for specific subareas of this research. Methods We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles reporting US-led academic research on digital clinical measures between January 2019 and February 2021. We screened each publication against specific inclusion and exclusion criteria. We then identified and categorized research studies based on the types of academic research, sensors used, and funding sources. Finally, we compared and contrasted the funding support for these specific subareas of research and sensor types. Results The search retrieved 4240 articles of interest. Following the screening, 295 articles remained for data extraction and categorization. The top five research subareas included operations research (research analysis; n=225, 76%), analytical validation (n=173, 59%), usability and utility (data visualization; n=123, 42%), verification (n=93, 32%), and clinical validation (n=83, 28%). The three most underrepresented areas of research into digital clinical measures were ethics (n=0, 0%), security (n=1, 0.5%), and data rights and governance (n=1, 0.5%). Movement and activity trackers were the most commonly studied sensor type, and physiological (mechanical) sensors were the least frequently studied. We found that government agencies are providing the most funding for research on digital clinical measures (n=192, 65%), followed by independent foundations (n=109, 37%) and industries (n=56, 19%), with the remaining 12% (n=36) of these studies completely unfunded. Conclusions Specific subareas of academic research related to digital clinical measures are not keeping pace with the rapid expansion and adoption of digital sensing products. An integrated and coordinated effort is required across academia, academic partners, and academic funders to establish the field of digital clinical measures as an evidence-based field worthy of our trust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.