To explore new methods to maintain the dimensional stability of waterlogged archaeological wood after drying and keep the natural cell lumens unaltered for future retreatments, activator regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) is employed to consolidate archaeological wood. To prepare the ATRP process, the waterlogged archaeological wood samples (
Pinus
massoniana with maximum moisture content of around 529%) were first modified by 2-bromoisobutyryl bromide in CH
2
Cl
2
to acquire C-Br bonds as initiators. Then, butyl methacrylate or styrene was polymerized to the remaining cell walls with catalyst (CuBr
2
), reductant (ascorbic acid) and ligand (PMDETA) in ethanol. After the treatment, the samples were washed and naturally dried. The results characterized by microscopy showed that the polymerization only took place within the remaining cell walls, showing no sign of collapse or distortion after air drying, and all natural cell lumens could be retained for future retreatments. Also, anti-shrinkage efficiencies as high as 87.8% for the wood sample grafted with polystyrene and 98.5% for the wood sample grafted with polybutylmethacrylate were obtained from the treatment described in this paper, indicating modification of grafting polymer through ARGET ATRP can help maintain the dimensional stability of water archaeological wood effectively.
Here we first report a piece of K 2 O-PbO-SiO 2 ancient glass opacified by fluorite dendrites with archaeological background. This piece of glass was excavated from Nanhai I shipwreck, a merchant ship once heading for Southeast Asia, but sinking near Yangjiang, Guangdong province. Analysis of scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction and Raman spectroscopy were used to identify the glass matrix and the fluorite dendritic crystals within it. The elemental feature is consistent with the prevailing K 2 O-PbO-SiO 2 glass system during Tang and Song Dynasties. However, the presence of fluorite dendrites with almost no Na, Al and P elements strongly suggests an astonishing conclusion that the fluorite has already been used as an opacifying agent around 800 years ago. Moreover, through replication of glass samples with similar compositions to the ancient one, it is suggested that fluorite dendrites with a similar size can be obtained when fired at around 1000-1050 °C and cooled within the furnace. On the basis of different crystal growth outcomes of two cooling strategies and the presence of the large undisturbed dendrite, it is inferred that the original glass vessel was probably made though die-casting instead of blowing technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.