Increasing attention has been paid to cell-based medicines. Many in vivo and in vitro studies have demonstrated the efficacy of stem cell transplantation for the regeneration of periodontal tissues over the past 20 years. Although positive evidence has accumulated regarding periodontal regeneration using stem cells, the exact mechanism of tissue regeneration is still largely unknown. This review outlines the practicality and emerging problems of stem cell transplantation therapy for periodontal regeneration. In addition, possible solutions to these problems and cell-free treatment are discussed.
Periodontal disease is a chronic inflammation of tooth-supporting tissues, and the destruction of these tissues results in tooth loss. Regeneration of periodontal tissues is the ultimate goal of periodontal treatment. We previously reported that transplantation of conditioned medium (CM) of periodontal ligament stem cells (PDLSCs) demonstrated the enhancement of periodontal tissue regeneration, compared to CM from fibroblasts (Fibroblast-CM). We hypothesized that the angiogenic effects of PDLSC-CM might participate in the enhanced wound healing of periodontal tissues. The aim of this study was to investigate the effect of PDLSC-CM on the functions of endothelial cells. PDLSCs were cultured from periodontal ligament tissues obtained from healthy volunteers. Human gingival epithelial cells, dermal fibroblasts, osteoblasts, and umbilical vein endothelial cells (HUVECs) were purchased from commercial sources. The functions of endothelial cells were examined using immunostaining of Ki67, observation of nuclear fragmentation and condensation (apoptosis), and network formation on Matrigel. Vascular endothelial cell growth factor (VEGF) level was measured using an ELISA kit. HUVECs demonstrated higher cell viability in PDLSC-CM when compared with those in Fibroblast-CM. HUVECs demonstrated a higher number of Ki67-positive cells and lower apoptosis cells in PDLSC-CM, compared to Fibroblast-CM. Additionally, HUVECs formed more capillary-like structures in PDLSC-CM than Fibroblast-CM. PDLSC-CM contained higher levels of angiogenic growth factor, VEGF, than Fibroblast-CM. Our results showed that PDLSC-CM increased cell viability, proliferation, and capillary formation of HUVECs compared to Fibroblast-CM, suggesting the angiogenic effects of PDLSC-CM, and the effect is a potential regenerative mechanism of periodontal tissues by PDLSC-CM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.