Oat (Avena sativa L.) is one of the important forage crops in the world. However, oat grown in Southwest China has higher moisture content and their preservation face significant challenges. In addition, existing commercial lactic acid bacteria (LAB) have poor fermentation effects in hot and humid regions. Consequently, the current study investigated the response of oat fermentation quality and microbial community to self-selected LAB inoculation. The treatments were: CK, sterilized water; LP694, Lactobacillus plantarum 694; LR753, Lactobacillus rhamnosus 753; and LPLR, LP694 combined with LR753, followed by 1, 3, 7, 14, and 60 days (d) of fermentation. The results showed that LAB inoculation significantly raised the lactic acid content, and decreased the level of pH value, acetic acid, and ammonia-N in oat silage. The LR753 group had a significantly higher (p < 0.05) lactic acid content (60.95 g kg–1 DM), and lower pH value (3.95) and ammonia-N content (10.1 g kg–1 DM) followed by the LPLR group. The LR753 showed lower NDF (54.60% DM) and ADF (39.73% DM) contents than other groups. The Lactobacillus was a prevalent genus in LAB-treated groups, and its relative abundance reached maximum in LP694 (69%) on day 3, while in the LR753 group (72%) on 60 days. The Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus fermentum became the dominant species in LAB-treated groups with fermentation time. The Lactobacillus genus was positively correlated with WSC (R = 0.6, p < 0.05), while negatively correlated with pH (R = −0.5, p < 0.05), and BA (R = −0.5, p < 0.01). Overall, the LR753 group had better fermentation quality and preservation of nutritional components providing theoretical support and guidance for future oat silage production in Southwest China.
Tibetan Plateau is facing serious shortage of forage in winter and spring season due to its special geographical location. Utilization of forages is useful to alleviate the forage shortage in winter and spring season. Consequently, the current study was aimed to evaluate the influence of storage time on the silage quality and microbial community of the maize (Zea mays L.) and faba bean (Vicia faba L.) mixed silage at Qinghai-Tibet Plateau. Maize and faba bean were ensiled with a fresh weight ratio of 7:3, followed by 30, 60, 90, and 120 days of ensiling. The results showed the pH value of mixed silage was below 4.2 at all fermentation days. The LA (lactic acid) content slightly fluctuated with the extension of fermentation time, with 33.76 g/kg DM at 90 days of ensiling. The AA (acetic acid) and NH3-N/TN (ammonium nitrogen/total nitrogen) contents increased with the extension of fermentation time and no significantly different between 90 and 120 days. The CP (crude protein) and WSC (water soluble carbohydrate) contents of mixed silage decreased significantly (P < 0.05) with ensiling time, but the WSC content remained stable at 90 days. The Proteobacteria was the predominant phyla in fresh maize and faba bean, and Pseudomonas and Sphingomonas were the predominant genera. After ensiling, Lactobacillus was the prevalent genus at all ensiling days. The relative abundance of Lactococcus increased rapidly at 90 days of ensiling until 120 days of fermentation. Overall, the storage time significant influenced the silage fermentation quality, nutrient content, and microbial environment, and it remained stable for 90 days of ensiling at Qinghai-Tibet Plateau. Therefore, the recommended storage time of forage is 90 days in Qinghai-Tibet Plateau and other cool areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.