A smart city is an urban development vision to integrate multiple information and communication technology (ICT), "Big Data" and Internet of Things (IoT) solutions in a secure fashion to manage a city's assets for sustainability, resilience and liveability. Meanwhile, water quality monitoring has been evolving to the latest wireless sensor network (WSN) based solutions in recent decades. This paper presents a multi-parameter water quality monitoring system of Bristol Floating Harbour which has successfully demonstrated the feasibility of collecting real-time high-frequency water quality data and displayed the real-time data online. The smart city infrastructure-Bristol Is Open was utilised to provide a plug & play platform for the monitoring system. This new system demonstrates how a future smart city can build the environment monitoring system benefited by the wireless network covering the urban area. The system can be further integrated in the urban water management system to achieve improved efficiency.
Numerical weather models such as WRF (Weather Research and Forecasting) are increasingly used in studies on water resources. However, they have suffered from relatively poor performance in rainfall estimation. Among the various influential factors, a critical parameter in the WRF model rainfall retrieval is raindrop size distribution (DSD), which has not been fully explored. The analysis of sensitivity and uncertainty of the DSD model accuracy is significant for rainfall forecasts based on mesoscale numerical weather prediction (NWP) models. A WRF-disdrometer integrated error assessment framework is developed to analyze the accuracy and sensitivity of DSD parameterizations of gamma distribution in WRF rainfall simulation. This study adopts three different microphysics parameterizations (Morrison, WDM6, and Thompson aerosol-aware) to simulate the DSD of approximately one hundred rainfall events in Chilbolton, UK that are categorized into 12 scenarios based on the season, rainfall evenness, and rainfall rate. The Thompson aerosol-aware microphysics scheme shows the best performance among the three. In comparisons of WRF rainfall simulations across different scenarios of evenness and rainfall rate, a higher accuracy is obtained with more even rain and a higher rainfall rate. The sensitivity results of different DSD parameterizations indicate that the sensitivity to the intercept parameter 0 is pronouncedly higher than those to the shape parameter μ and slope parameter λ for all studied schemes. The overall WRF rainfall shows a trend of slight underestimation followed by overestimation as μ increases; further, the rainfall is overestimated when 10 0 or λ decreases and is underestimated when it increases and then remains constant. Comparisons of different scenarios reveal that variations of DSD parameters of even rain have a relatively high impact on rainfall recognizability, and the DSD parameterizations show a higher sensitivity for rainfall with a low rate. Moreover, the sensitivity discrimination is not clear among the rainfall of different seasons. The uncertainty assessment of the WRF rainfall retrieval caused by the shape parameter suggests that a gamma DSD model with a variable shape parameter should be developed according to the evenness, rainfall rate, and microphysics parameterizations by using the WRF model. Some modified algorithms of the WRF gamma DSD model for achieving better accuracy in WRF rainfall retrievals will be explored in future studies with various climatic regimes by adjusting the DSD parameterization based on the assimilation of measured data.
Abstract. The rainfall outputs from the latest convection-scale Weather Research and Forecasting (WRF) model are shown to provide an effective means of extending prediction lead times in flood forecasting. In this study, the performance of the WRF model in simulating a regional sub-daily extreme rainfall event centred over Beijing, China is evaluated at high temporal (sub-daily) and spatial (convective-resolving) scales using different domain configurations and spin-up times. Seven objective verification metrics that are calculated against the gridded ground observations and the ERA-Interim reanalysis are analysed jointly using subjective verification methods to identify the likely best WRF configurations. The rainfall simulations are found to be highly sensitive to the choice of domain size and spin-up time at the convective scale. A model run covering northern China with a 1 : 5 : 5 horizontal downscaling ratio (1.62 km), 57 vertical layers (less than 0.5 km), and a 60 h spin-up time exhibits the best performance in terms of the accuracy of rainfall intensity and the spatial correlation coefficient (R′). A comparison of the optimal run and the initial run performed using the most common settings reveals clear improvements in the verification metrics. Specifically, R′ increases from 0.226 to 0.67, the relative error of the maximum precipitation at a point rises from −56 to −11.7 %, and the root mean squared error decreases by 33.65 %. In summary, re-evaluation of the domain configuration options and spin-up times used in WRF is crucial for improving the accuracy and reliability of rainfall outputs used in applications related to regional sub-daily heavy rainfall (SDHR).
Big data is popular in the areas of computer science, commerce and bioinformatics, but is in an early stage in hydroinformatics. Big data is originated from the extremely large datasets that cannot be processed in tolerable elapsed time with the traditional data processing methods. Using the analogy from the object-oriented programming, big data should be considered as objects encompassing the data, its characteristics and the processing methods. Hydroinformatics can benefit from the big data technology with newly emerged data, techniques and analytical tools to handle large datasets, from which creative ideas and new values could be mined. This paper provides a timely review on big data with its relevance to hydroinformatics. A further exploration on precipitation big data is discussed because estimation of precipitation is an important part of hydrology for managing floods and droughts, and understanding the global water cycle. It is promising that fusion of precipitation data from remote sensing, weather radar, rain gauge and numerical weather modelling could be achieved by parallel computing and distributed data storage, which will trigger a leap in precipitation estimation as the available data from multiple sources could be fused to generate a better product than those from single sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.