Tumor budding is considered a sign of cancer cell activity and the first step of tumor metastasis. This study aimed to establish an automatic diagnostic platform for rectal cancer budding pathology by training a Faster region-based convolutional neural network (F-R-CNN) on the pathological images of rectal cancer budding. Postoperative pathological section images of 236 patients with rectal cancer from the Affiliated Hospital of Qingdao University, China, taken from January 2015 to January 2017 were used in the analysis. The tumor site was labeled in Label image software. The images of the learning set were trained using Faster R-CNN to establish an automatic diagnostic platform for tumor budding pathology analysis. The images of the test set were used to verify the learning outcome. The diagnostic platform was evaluated through the receiver operating characteristic (ROC) curve. Through training on pathological images of tumor budding, an automatic diagnostic platform for rectal cancer budding pathology was preliminarily established. The precision–recall curves were generated for the precision and recall of the nodule category in the training set. The area under the curve = 0.7414, which indicated that the training of Faster R-CNN was effective. The validation in the validation set yielded an area under the ROC curve of 0.88, indicating that the established artificial intelligence platform performed well at the pathological diagnosis of tumor budding. The established Faster R-CNN deep neural network platform for the pathological diagnosis of rectal cancer tumor budding can help pathologists make more efficient and accurate pathological diagnoses.
Background: Chemosensitivity prediction in colorectal cancer patients with liver metastases has remained a research hotspot. Radiomics can extract features from patient imaging, and deep learning or machine learning can be used to build models to predict patient outcomes prior to chemotherapy. Purpose: In this study, the radiomics features and clinical data of colorectal cancer patients with liver metastases were used to predict their sensitivity to irinotecan-based chemotherapy. Methods: A total of 116 patients with unresectable colorectal cancer liver metastases who received first-line irinotecan-based chemotherapy from January 2015 to January 2020 in our institution were retrospectively collected. Overall, 116 liver metastases were randomly divided into training (n = 81) and validation (n = 35) cohorts in a 7:3 ratio. The effect of chemotherapy was determined based on Response Evaluation Criteria in Solid Tumors. The lesions were divided into response and nonresponse groups. Regions of interest (ROIs) were manually segmented, and sample sizes of 1×1×1, 3×3×3, 5×5×5 mm 3 were used to extract radiomics features. The relevant features were identified through Pearson correlation analysis and the MRMR algorithm, and the clinical data were merged into the artificial neural network. Finally, the p-model was obtained after repeated learning and testing. Results: The p-model could distinguish responders in the training (area under the curve [AUC] 0.754, 95% CI 0.650-0.858) and validation cohorts (AUC 0.752 95% CI 0.581-0.904). AUC values of the pure image group model are 0.720 (95% CI 0.609-0.827) and 0.684 (95% CI 0.529-0.890) for the training and validation cohorts respectively. As for the clinical data model, AUC values of the training and validation cohorts are 0.638 (95% CI 0.500-0.757) and 0.545 (95% CI 0.360-0.785), respectively. The performances of the latter two are less than that of the former. Conclusion:The p-model has the potential to discriminate colorectal cancer patients sensitive to chemotherapy. This model holds promise as a noninvasive tool to predict the response of colorectal liver metastases to chemotherapy, allowing for personalized treatment planning. K E Y W O R D Sartificial neural networks, chemotherapy efficacy, colorectal cancer liver metastasis, irinotecan, machine learning, radiomics Wei Qi and Jing Yang contributed equally to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.