Al-polymer laminated membranes are widely used in large aerospace structures. When the laminated membranes are pressurized, wrinkles emerge, which have an important effect on the performance of the structures during operation. This paper describes the numerical simulation and experimental investigation of wrinkles in laminated membranes. The nonlinear postbuckling analysis method, based on laminated thin-shell elements, was used to simulate the onset, growth, and final configuration of wrinkles when laminated membranes are subjected to external loads. The simulations are conducted with the ANSYS finite element package. Changing regularities of number, wavelength, and range for the wrinkles during the onset and growth processes are investigated. The wrinkles of laminated membranes with different design parameters such as material selection, ply number, ply angle, and ply mode are predicted. Devices that can be used to clamp and load laminated membranes in several load cases were designed and developed. A 3D photogrammetry system was constructed to characterize wrinkling patterns of laminated membranes subjected to shear displacement loads. By comparing the results of numerical analysis and experimental results, the accuracy of the numerical analysis method was verified. This study work is expected to inform wrinkling simulation and shape control of aerospace laminated membrane structures.
Space-deployable habitat modules provide artificial habitable environments for astronauts and will be widely used for the construction of future space stations and lunar habitats. A novel structural design concept of space-deployable habitat modules consisting of flexible composite shells and deployable trusses has been proposed. Geometric relationships of deployable trusses based on two types of scissor elements were formulated. Flexible composite shells of space habitat modules were designed, and a nonlinear FEA model using ANSYS software was described. Considering folding efficiencies, stiffness, and strength of the structures, the influences of design parameters were analyzed and the final design scheme of space-deployable habitat modules was determined. After detailing the structural designs, low-speed impact dynamic responses between the structures and a stainless steel cylinder were simulated. The analysis results show that dynamic responses are only significant at the point of low-speed impact. The works will provide technical supports for structural designs and engineering applications of space-deployable habitat modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.