Fixed point theory is used to investigate nonlinear discrete Volterra equations that are perturbed versions of linear equations. Sufficient conditions are established (i) to ensure that stability (in a sense that is defined) of the solutions of the linear equation implies a corresponding stability of the zero solution of the nonlinear equation and (ii) to ensure the existence of asymptotically periodic solutions.
In this paper, we investigate periodic solutions of linear and nonlinear discrete Volterra equations of convolution or non-convolution type with unbounded memory.For linear discrete Volterra equations of convolution type, we establish Fredholm's alternative theorem and for equations of non-convolution type, and we prove that a unique periodic solution exists for a particular bounded initial function under appropriate conditions. Further, this unique periodic solution attracts all other solutions with bounded initial function. All solutions of linear discrete Volterra equations with bounded initial functions are asymptotically periodic under certain conditions. A condition for periodic solutions in the nonlinear case is established.
For periodic and almost periodic functional difference equations with finite delay, the existence of periodic and almost periodic solutions is obtained by using stability properties of a bounded solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.