a b s t r a c tWe demonstrate that a lattice-Boltzmann lattice-spring method can be used to simulate a dynamic behavior of a suspension of a large number of flexible fibers in finite Reynolds number flows. In the method, lattice-Boltzmann equation is adopted to simulate fluid velocity and vorticity while lattice-spring model with three-body forces can be employed to model the bending deformation of solid bodies. In order to realize the non-slip boundary condition, a forcing term is simply calculated by using the Newtonian second law and imposed with an immersed boundary scheme. The method is validated by comparing the present results with experiments and existing theories and methods. Subsequently, the method is applied to simulate a dynamic process of flexible fibers settling on a static or moving screen/wire net while a fiber mat is simultaneously built over the screen and resists fluid flowing. The number of fibers, fiber density and flexibility, and ratio of the relative velocity of the screen/wire to fluid can be systematically varied at different levels. Their influences on drainage rate are computed and evaluated.
A previously developed lattice-Boltzmann lattice-spring method is applied to simulate a wet press process. In simulations, multi-individual flexible fibers are settled on a wire screen by the force of gravity, and a fiber network is formed on the top surface of the wire screen. Next, the coordinates and velocities of fluid and fiber solid particles are copied to a computer press simulator composed of two perforated plates. A pressure pulse is imposed at the fluid contact line of the two press plates. Water is squeezed out of the fiber network by the pressure. During simulations, fiber rigidity, fiber concentrations, and pressure pulses are varied and their effects on water removal and re-wet phenomena are systematically studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.