Accurately measuring regional evapotranspiration (ET) is of great significance for studying global climate change, regional hydrological cycles, and surface energy balance. However, estimating regional ET from mixed vegetation types is still challenging. In this study, the Surface Energy Balance Algorithm for Land (SEBAL) and the Surface Energy Balance System (SEBS) models were applied to estimate surface ET in a small agricultural watershed. Landsat8 satellite images were used as input data to the single-source models. The two models were validated at single point and ecosystem scales. The results showed that both models overestimated ET observations in paddy fields and orange groves but underestimated them in dry farmland. The error was mainly caused by the heterogeneity of the mixed pixels. The linear spectral mixture model and a set of equations were introduced to reduce the simulation error. The revised results showed that the relative precision of SEBAL was improved by 9.87% and 10.06%, respectively. This research is expected to provide new ideas for future development of accurate remote-sensing ET estimations on heterogeneous surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.