A B S T R A C TThis study employed a multi-component Eulerian-Lagrangian approach to model the evaporation and dispersion of cough droplets in quiescent air. The approach is featured with a continuity equation being explicitly solved for water vapor, which allows comprehensively considering the effects of inhomogeneous humidity field on droplets evaporation and movement. The computational fluid dynamics (CFD) computations based on the approach achieved a satisfactory agreement with the theoretical models reported in the literature. The results demonstrated that the evaporation-generated vapor and super-saturated wet air exhaled from the respiratory tracks forms a "vapor plume" in front of the respiratory track opening, which, despite the short life time, significantly impedes the evaporation of the droplets captured in it. The study also revealed that due to the droplet size reduction induced by evaporation, both the number density of airborne droplets and mass concentration of inhalable pathogens remarkably increased, which can result in a higher risk of infection. Parametric studies were finally conducted to evaluate the factors affecting droplet evaporation. Summary: The study demonstrated the importance of considering inhomogeneous humidity field when modelling the evaporation and dispersion of cough droplets. The multi-component Eulerian-Lagrangian model presented in this study provides a comprehensive approach to address different influential factors in a wide parametric range, which will enhance the assessment of the health risks associated with droplet exposure.
A B S T R A C TThis study numerically investigated the thermal effect of human body on the time-dependent dispersion of cough droplets with evaporation process. The thermal flow of human body was imitated using a 3D thermal manikin with real body features, while a recent developed multi-component Eulerian-Lagrangian approach was used to address the effects of inhomogeneous temperature and humidity fields on droplet evaporation. By comparing the results yielded without and with the human body heat, the outcomes demonstrated strong impact of human body heat on the droplets mass fraction and local air velocity distributions. Inspirable droplets could potentially drop into respirable droplets by evaporation, although the evaporation rate was not significantly affected by body heat. The thermal effect of human body revealed its vital impacts on the time-dependent droplets dispersion. Due to the buoyancy driven thermal flow, both the vertical velocity and displacement of small droplets (≤20 μm) were completely reversed from descending to ascending, while the deposition time of large droplets (≥50 μm) were significantly delayed. With the reduced droplet size by evaporation and droplets lifted into breathing zone by human thermal effect, the inhalability and infection risks of cough droplets would be much higher in real occupied indoor spaces.
a b s t r a c tAn urgent demand of assessing passengers' exposure risks in airliner cabins was raised as commercial airliners are one of the major media that carrying and transmitting infectious disease worldwide. In this study, simulations were conducted using a Boeing 737 cabin model to study the transport characteristics of airborne droplets and the associated infection risks of passengers. The numerical results of the airflow field were firstly compared against the experimental data in the literature to validate the reliability of the simulations. Airborne droplets were assumed to be released by passengers through coughing and their transport characteristics were modelled using the Lagrangian approach. Numerical results found that the particle travel distance was very sensitive to the release locations, and the impact was more significant along the longitudinal and horizontal directions. Particles released by passengers sitting next to the windows could travel much further than the others. A quantifiable approach was then applied to assess the individual infection risks of passengers. The key particle transport information such as the particle residence time yielded from the Lagrangian tracking process was extracted and integrated into the Wells-Riley equation to estimate the risks of infection. Compared to the Eulerian-based approach, the Lagrangian-based approach presented in this study is more robust as it addresses both the particle concentration and particle residence time in the breathing zone of every individual passenger.
The goals of this study were to investigate the effect of cough-jet on local airflow and contaminant transport in a typical cabin environment by using computational fluid dynamics. A fully occupied airliner cabin section was employed as the computational domain. Contaminants were released through coughing passengers from different locations inside the cabin. Numerical results in terms of contaminant transport characteristics were examined and compared. It can be concluded that cough-jet has significant effects on air flow in front of cough passenger in a short period of time. Also, it was found that, without considering the cough-jet model, the simulation results could not be a precise representation of the transport and distribution of cough-generated airborne contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.