In this paper, we study a predator-prey model with delay and harvesting on predator. We give the conditions for stability and Turing instability of coexisting equilibrium by analyzing the eigenvalue spectrum. By using delay as a bifurcation parameter we give conditions for occurrence of Hopf bifurcation. We investigate the property of bifurcating period solutions by calculating the normal form. We perform some numerical simulations to support our theoretical result. Our results show that diffusion and delay are two factors that should be considered in establishing the predator-prey model, since they can induced the Turing instability and spatially bifurcating period solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.