Triboelectric nanogenerators (TENGs) naturally have the capability of high voltage output to breakdown gas easily. Here we present a concept of triboelectric microplasma by integrating TENGs with the plasma source so that atmospheric-pressure plasma can be powered only by mechanical stimuli. Four classical atmospheric-pressure microplasma sources are successfully demonstrated, including dielectric barrier discharge (DBD), atmospheric-pressure non-equilibrium plasma jets (APNP-J), corona discharge, and microspark discharge. For these types of microplasma, analysis of electric characteristics, optical emission spectra, COMSOL simulation and equivalent circuit model are carried out to explain transient process of different discharge. The triboelectric microplasma has been applied to patterned luminescence and surface treatment successfully as a first-step evaluation as well as to prove the system feasibility. This work offers a promising, facile, portable and safe supplement to traditional plasma sources, and will enrich the diversity of plasma applications based on the reach of existing technologies.
Lip language is an effective method of voice-off communication in daily life for people with vocal cord lesions and laryngeal and lingual injuries without occupying the hands. Collection and interpretation of lip language is challenging. Here, we propose the concept of a novel lip-language decoding system with self-powered, low-cost, contact and flexible triboelectric sensors and a well-trained dilated recurrent neural network model based on prototype learning. The structural principle and electrical properties of the flexible sensors are measured and analysed. Lip motions for selected vowels, words, phrases, silent speech and voice speech are collected and compared. The prototype learning model reaches a test accuracy of 94.5% in training 20 classes with 100 samples each. The applications, such as identity recognition to unlock a gate, directional control of a toy car and lip-motion to speech conversion, work well and demonstrate great feasibility and potential. Our work presents a promising way to help people lacking a voice live a convenient life with barrier-free communication and boost their happiness, enriches the diversity of lip-language translation systems and will have potential value in many applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.