Based on the tight-binding model calculations and photonic experimental visualization on graphene, we report the domain-wall-induced gapped topological kink states and topological corner states. In graphene, domain walls with gapless topological kink states could be induced either by sublattice symmetry breaking or by lattice deformation. We find that the coexistence of these two mechanisms will induce domain walls with gapped topological kink states. Significantly, the intersection of these two types of domain wall gives rise to topological corner state localized at the crossing point. Through the manipulation of domain walls, we show graphene not only a versatile platform supporting multiple topological corner modes in a controlled manner, but also possessing promising applications such as fabricating topological quantum dots composed of gapped topological kink states and topological corner states.
Even-denominator fractional quantum Hall (FQH) states, such as 5/2 and 7/2, have been well known in a two-dimensional electron gas (2DEG) for decades and are still investigated as candidates of non-Abelian statistics. In this paper, we present the observation of a 3/2 FQH plateau in a single-layer 2DEG with lateral confinement at a bulk filling factor of 5/3. The 3/2 FQH plateau is quantized at $$\left( {\frac{h}{{e^2}}} \right)/\left( {\frac{3}{2}} \right)$$ h e 2 ∕ 3 2 within 0.02%, and can survive up to 300 mK. This even-denominator FQH plateau may imply intriguing edge structure and excitation in FQH system with lateral confinement. The observations in this work demonstrate that understanding the effect of the lateral confinement on the many-body system is critical in the pursuit of important theoretical proposals involving edge physics, such as the demonstration of non-Abelian statistics and the realization of braiding for fault-tolerant quantum computation.
The slightest change in the extra/intracellular concentration of metal ions results in amplified effects by signaling cascades that regulate both cell fate within the tumor microenvironment and immune status, which influences the network of antitumor immunity through various pathways. Based on the fact that metal ions influence the fate of cancer cells and participate in both innate and adaptive immunity, they are widely applied in antitumor therapy as immune modulators. Moreover, nanomedicine possesses the advantage of precise delivery and responsive release, which can perfectly remedy the drawbacks of metal ions, such as low target selectivity and systematic toxicity, thus providing an ideal platform for metal ion application in cancer treatment. Emerging evidence has shown that immunotherapy applied with nanometallic materials may significantly enhance therapeutic efficacy. Here, we focus on the physiopathology of metal ions in tumorigenesis and discuss several breakthroughs regarding the use of nanometallic materials in antitumor immunotherapeutics. These findings demonstrate the prominence of metal ion-based nanomedicine in cancer therapy and prophylaxis, providing many new ideas for basic immunity research and clinical application. Consequently, we provide innovative insights into the comprehensive understanding of the application of metal ions combined with nanomedicine in cancer immunotherapy in the past few years. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.