We investigate the one-bit MIMO (1b-MIMO) radar that performs one-bit sampling with a timevarying threshold in the temporal domain and employs compressive sensing in the spatial and Doppler domains. The goals are to significantly reduce the hardware cost, energy consumption, and amount of stored data. The joint angle and Doppler frequency estimations from noisy one-bit data are studied.By showing that the effect of noise on one-bit sampling is equivalent to that of sparse impulsive perturbations, we formulate the one-bit ℓ 1 -regularized atomic-norm minimization (1b-ANM-L1) problem to achieve gridless parameter estimation with high accuracy. We also develop an iterative method for solving the 1b-ANM-L1 problem via the alternating direction method of multipliers. The Cramér-Rao bound (CRB) of the 1b-MIMO radar is analyzed, and the analytical performance of one-bit sampling with two different threshold strategies is discussed. Numerical experiments are presented to show that the 1b-MIMO radar can achieve high-resolution parameter estimation with a largely reduced amount of data.
We propose an analytical model to estimate the depth-error-induced virtual view synthesis distortion (VVSD) in 3D video, taking the distance between reference and virtual views (virtual view position) into account. In particular, we start with a comprehensive preanalysis and discussion over several possible VVSD scenarios. Taking intrinsic characteristic of each scenario into consideration, we specifically classify them into four clusters: 1) overlapping region; 2) disocclusion and boundary region; 3) edge region; and 4) infrequent region. We propose to model VVSD as the linear combination of the distortion under different scenarios (DDSs) weighted by the probability under different scenarios (PDSs). We show analytically that DDS and PDS can be related to the virtual view position using quadratic/biquadratic models and linear models, respectively. Experimental results verify that the proposed model is capable of estimating the relationship between VVSD and the distance between reference and virtual views. Therefore, our model can be used to inform a reference view setup for capturing, or distortion at certain virtual view positions, when depth information is compressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.