This article offers an optimal control tracking method using an event-triggered technique and the internal reinforcement Q-learning (IrQL) algorithm to address the tracking control issue of unknown nonlinear systems with multiple agents (MASs). Relying on the internal reinforcement reward (IRR) formula, a Q-learning function is calculated, and then the iteration IRQL method is developed. In contrast to mechanisms triggered by time, an event-triggered algorithm reduces the rate of transmission and computational load, since the controller may only be upgraded when the predetermined triggering circumstances are met. In addition, in order to implement the suggested system, a neutral reinforce-critic-actor (RCA) network structure is created that may assess the indices of performance and online learning of the event-triggering mechanism. This strategy is intended to be data-driven without having in-depth knowledge of system dynamics. We must develop the event-triggered weight tuning rule, which only modifies the parameters of the actor neutral network (ANN) in response to triggering cases. In addition, a Lyapunov-based convergence study of the reinforce-critic-actor neutral network (NN) is presented. Lastly, an example demonstrates the accessibility and efficiency of the suggested approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.