BackgroundAmounting evidence indicate that miRNAs play an important role in the development of various cancers. MiR-495 is a potential tumor suppressor in cancers, however its role in melanoma is still elusive. The study aimed to investigate the role of miR-495 and the underlying mechanisms in melanoma cells.MethodsThe levels of miR-495 in melanoma tissues and cell lines were measured by quantitative real-time polymerase chain reaction. Mimics of miR-495 was transfected into human melanoma cells A375 and MeWo. Cell viability of miR-495-transfected cells was assayed by MTT assay. Cell migration and invasion of miR-495 transfected cells were measured by wound healing assay and transwell assay, respectively. Nucleosome enzyme-linked immunosorbent assay was performed to measure the apoptosis induced by overexpression of miR-495. Luciferase reporter assays were performed to verify the interaction between miR-495 and its target PBX3.ResultsIt was found that the expression levels of miR-495 were down-regulated in melanoma tissues and cells. Moreover, overexpression of miR-495 inhibited melanoma cell proliferation, migration and invasion in vitro. PBX3 was identified as a target for inhibition by miR-495 and was confirmed by luciferase assay, quantitative real-time polymerase chain reaction and western blot. We also indicated that silencing of PBX3 also repressed melanoma cell proliferation, migration and invasion in vitro.ConclusionIn summary, our findings demonstrated that miR-495 functions as a tumor suppressor in human melanoma via directly targeting PBX3.
IntroductionHarvest time represents one of the crucial factors concerning the quality of alpine green tea. At present, the mechanisms of the tea quality changing with harvest time have been unrevealed.MethodsIn the current study, fresh tea leaves (qmlc and gylc) and processed leaves (qmgc and gygc) picked during Qingming Festival and Guyu Festival were analyzed by means of sensory evaluation, metabolomics, transcriptomic analysis, and high-throughput sequencing, as well as their endophytic bacteria (qm16s and gy16s).ResultsThe results indicated qmgc possessed higher sensory quality than gygc which reflected from higher relative contents of amino acids, and soluble sugars but lower relative contents of catechins, theaflavins, and flavonols. These differential metabolites created features of light green color, prominent freshness, sweet aftertaste, and mild bitterness for qmgc.DiscussionFlavone and flavonol biosynthesis and phenylalanine metabolism were uncovered as the key pathways to differentiate the quality of qmgc and gygc. Endophytic bacteria in leaves further influence the quality by regulating the growth of tea trees and enhancing their disease resistance. Our findings threw some new clues on the tea leaves picking to pursue the balance when facing the conflicts of product quality and economic benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.