Since a growing number of malicious applications attempt to steal users’ private data by illegally invoking permissions, application stores have carried out many malware detection methods based on application permissions. However, most of them ignore specific permission combinations and application categories that affect the detection accuracy. The features they extracted are neither representative enough to distinguish benign and malicious applications. For these problems, an Android malware detection method based on permission sensitivity is proposed. First, for each kind of application categories, the permission features and permission combination features are extracted. The sensitive permission feature set corresponding to each category label is then obtained by the feature selection method based on permission sensitivity. In the following step, the permission call situation of the application to be detected is compared with the sensitive permission feature set, and the weight allocation method is used to quantify this information into numerical features. In the proposed method of malicious application detection, three machine-learning algorithms are selected to construct the classifier model and optimize the parameters. Compared with traditional methods, the proposed method consumed 60.94% less time while still achieving high accuracy of up to 92.17%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.