BackgroundCryptosporidium hominis and C. parvum are usually considered to be the major pathogens responsible for human cryptosporidiosis. However, there have been few studies regarding the molecular epidemiology of Cryptosporidium in human infections in China. Here we investigated Cryptosporidium infection in patients with diarrhea, in Danyang Hospital of Jiangsu Province, China, at the genotype level.MethodsA total of 232 stool specimens were collected from outpatients with diarrhea in Danyang Hospital of Jiangsu Province, China, from February 2012 to January 2013. Each specimen was stained from direct fecal smears and examined for Cryptosporidium using modified acid fast staining and microscopy. Moreover, genomic DNA of each fecal sample was screened for the presence of Cryptosporidium with nested PCR, which was genotyped by analyzing the DNA sequences of small subunit rRNA (SSU rRNA).ResultsThe average infection rate of Cryptosporidium was 1.3% (3/232) by microscopy and subjected to PCR amplification of the SSU rRNA gene of Cryptosporidium, with 9.91% (23/232) being positive for Cryptosporidium with a significant peak in autumn. Based on the SSU rRNA gene, two Cryptosporidium spp. were identified, including C. andersoni (n =21) and C. hominis (n =2). Two types of C. andersoni, designated as A370+ and A370- , were found in the SSU rRNA gene in our present study, which was 100% homologous to C. andersoni infections derived from dairy calves and goats, respectively. The clinical questionnaires showed no significant difference in age, gender and frequency of diarrhea, but duration of diarrhea was shorter for C. andersoni than that of C. hominis (mean, 2 vs. 4 days; p <0.01).ConclusionsC. andersoni is the dominant species in Danyang City of Jiangsu Province. The fact that SSU rRNA sequences of C. andersoni obtained from human stools exhibited 100% homologous to those derived from dairy calves and goats supported that C. andersoni infection might be attributable to animal origin. The difference in the duration of diarrhea of C. andersoni and C. hominis indicated that different Cryptosporidium species might cause different clinical manifestations.
Spontaneous solid-state fermentation (SSF) of Chinese Baijiu involves diverse microbes from Daqu and pit mud (PM). Given that the transfer of interphase microflora during the fermentation is a continuous and dynamic process, longitudinal studies are essential to provide ecological insights into community stability and response to consecutive disturbances in the process. In this context, this study aimed to generate a comprehensive longitudinal characterization of the microbiota during the fermentation processes of Chinese strong-flavor Baijiu (CSFB) differing in cellar ages with consideration for potential relation to physicochemical variables. The microecology variations observed during the 6-years cellar SSF (SCSSF) and 30-years cellar SSF (TCSSF) processes reveal that fungal composition contributes to a larger extent than bacterial composition to such variations. Orders of Lactobacillales, Anaerolineales, Enterobacteriales, Bacillales, Eurotiales, and Saccharomycetales dominated (average relative abundances >10%) the microbiota in both SCSSF and TCSSF processes but with a different percentage in the operational taxonomic unit (out) abundances. Compared with the SCSSF process, TCSSF possessed slower microbial succession rates, which were in accordance with the profile of physicochemical properties. From a network perspective, the microbial community structure observed in the TCSSF processes was more stable than that in the SCSSF. This may benefit from the milder physicochemical conditions of the TCSSF processes, especially the temperature, which is also more beneficial to the growth of some groups that have negative effects on fermentation, such as Staphylococcus, Pseudomonas, and Acinetobacter.
Chinese herbal medicines used in combination have long-term been shown to be mild remedies with “integrated effects.” However, our study provides the first demonstration that M1, an active metabolite of ginsenoside, exerted its dramatic therapeutic effects on accelerated and severe lupus nephritis (ASLN) mice, featuring acute renal function impairment, heavy proteinuria, high serum levels of anti-dsDNA, and high-grade, diffuse proliferative renal lesions. In the present study, NZB/WF1 mice were given injections of lipopolysaccharide to induce the ASLN model. M1 (30 mg/kg) was then administered to the mice by gavage daily, and the mice were sacrificed on week 3 and week 5 after the induction of disease. To identify the potential mechanism of action for the pure compound, levels of NLRP3 inflammasome activation in bone marrow-derived dendritic cells (BMDCs), podocytes and macrophages, and antigen-specific T cell activation in BMDCs were determined in addition to mechanistic experiments in vivo . Treatment with M1 dramatically improved renal function, albuminuria and renal lesions and reduced serum levels of anti-dsDNA in the ASLN mice. These beneficial effects with M1 treatment involved the following cellular and molecular mechanistic events: [1] inhibition of NLRP3 inflammasome associated with autophagy induction, [2] modulation of T help cell activation, and [3] induction of regulatory T cell differentiation. M1 improved the ASLN mice by blunting NLRP3 inflammasome activation and differentially regulating T cell functions, and the results support M1 as a new therapeutic candidate for LN patients with a status of abrupt transformation of lower-grade (mesangial) to higher-grade (diffuse proliferative) nephritis.
Background Everolimus is an effective immunosuppressant in organ transplantation without impaired renal function. The present study aimed to evaluate the efficacy and safety of everolimus therapy in liver transplant recipients. Materials and methods A systematic literature search was conducted to identify the eligible studies. The quality of the included studies was assessed. The outcomes of interest were biopsy‐proven acute rejection (BPAR), graft loss, death, renal function and adverse events. Results Eight trials involving 1570 participants were included. Compared to the standard exposure to calcineurin inhibitors (CNIs), the incidences of BPAR, graft loss and death were not increased in the everolimus combined with reduced CNIs group. The renal function was significantly improved after everolimus combined with reduced CNI therapy, and the glomerular filtration rate (GFR) was estimated to be elevated by 5.59 (95% CI: 2.17‐9.01, P = .001) as compared to the standard exposure to CNIs. The risk of any adverse event was increased by everolimus combined with reduced CNI therapy (RR = 1.22, 95% CI: 1.04‐1.42, P = .01) as compared to the standard exposure to CNIs. The likelihood of infection was not associated with the regimen. Any publication bias was not identified. Conclusions Although everolimus combined with reduced CNI therapy significantly improved the renal function in liver transplant recipients, it did not influence the incidence of BPAR, graft loss and death. This regimen might be associated with an increased risk of adverse events, which needs to be elucidated further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.