Exposure to cocaine induces addiction-associated behaviors partially through remodeling neurocircuits in the nucleus accumbens (NAc). The paraventricular nucleus of thalamus (PVT), which projects to the NAc monosynaptically, is activated by cocaine exposure and has been implicated in several cocaine-induced emotional and motivational states. Here we show that disrupting synaptic transmission of select PVT neurons with tetanus toxin activated via retrograde trans-synaptic transport of cre from NAc efferents decreased cocaine selfadministration in rats. This projection underwent complex adaptations after self-administration of cocaine (0.75 mg/kg/infusion; 2 h/d × 5 d, 1 d overnight training). Specifically, 1d after cocaine self-administration, we observed increased levels of AMPA receptor (AMPAR)-silent glutamatergic synapses in this projection, accompanied by a decreased ratio of AMPAR-to-NMDA receptor (NMDAR)-mediated EPSCs. Furthermore, the decay kinetics of NMDAR EPSCs was significantly prolonged, suggesting insertion of new GluN2B-containing NMDARs to PVT-to-NAc synapses. After 45-d withdrawal, silent synapses within this projection returned to the basal levels, accompanied by a return of the AMPAR/NMDAR ratio and NMDAR decay kinetics to the basal levels. In amygdala and infralimbic prefrontal cortical projections to the NAc, a portion of cocaine-generated silent synapses becomes unsilenced by recruiting calcium-permeable AMPARs (CP-AMPARs) after drug withdrawal. However, the sensitivity of PVT-to-NAc synapses to CP-AMPAR-selective antagonists was not changed after withdrawal, suggesting that CP-AMPAR trafficking is not involved in the evolution of cocaine-generated silent synapses within this projection. Meanwhile, the release probability of PVT-to-NAc synapses was increased after short-and long-term cocaine withdrawal. These results reveal complex and profound alterations at PVT-to-NAc synapses after cocaine exposure and withdrawal.
The basolateral amygdala (BLA) sends excitatory projections to the nucleus accumbens (NAc) and regulates motivated behaviors partially by activating NAc medium spiny neurons (MSNs). Here, we characterized a feedforward inhibition circuit, through which BLA-evoked activation of NAc shell (NAcSh) MSNs was fine-tuned by GABAergic monosynaptic innervation from adjacent fast-spiking interneurons (FSIs). Specifically, BLA-to-NAcSh projections predominantly innervated NAcSh FSIs compared with MSNs and triggered action potentials in FSIs preceding BLA-mediated activation of MSNs. Due to these anatomical and temporal properties, activation of the BLA-to-NAcSh projection resulted in a rapid FSI-mediated inhibition of MSNs, timing-contingently dictating BLA-evoked activation of MSNs. Cocaine self-administration selectively and persistently up-regulated the presynaptic release probability of BLA-to-FSI synapses, entailing enhanced FSI-mediated feedforward inhibition of MSNs upon BLA activation. Experimentally enhancing the BLA-to-FSI transmission in vivo expedited the acquisition of cocaine self-administration. These results reveal a previously unidentified role of an FSI-embedded circuit in regulating NAc-based drug seeking and taking.
Genetic factors are considered to play an important role in drug dependence/addiction including the development of drug dependence and relapse. With the use of a model of drug self-administration in mutant mice, several specific genes and proteins have been identified as potentially important in the development of drug dependence. In contrast, little is known about the role of specific genes in enduring vulnerability to relapse, a clinical hallmark of drug addiction. Using a mouse model of reinstatement, which models relapse of drug-seeking behavior in addicts, we provide evidence that a partial reduction in the expression of the glial cell line-derived neurotrophic factor (GDNF) potentiates methamphetamine (METH) self-administration, enhances motivation to take METH, increases vulnerability to drug-primed reinstatement, and prolongs cue-induced reinstatement of extinguished METH-seeking behavior. In contrast, there was no significant difference in novelty responses, METH-stimulated hyperlocomotion and locomotor sensitization, food-reinforced operant behavior and motivation, or reinstatement of food-seeking behavior between GDNF heterozygous knockout mice and wild-type littermates. These findings suggest that GDNF may be associated with enduring vulnerability to reinstatement of METH-seeking behavior and a potential target in the development of therapies to control relapse.
Effects of varenicline (Champix), a nicotinic partial agonist, were evaluated on subjective effects of nicotine (drug discrimination), motivation for nicotine taking (progressive-ratio schedule of intravenous nicotine self-administration) and reinstatement (cue-induced reinstatement of previously extinguished nicotine-seeking behavior). Effects on motor performance were assessed in rats trained to discriminate nicotine (0.4 mg/kg) from saline under a fixed-ratio (FR10) schedule of food delivery and in rats trained to respond for food under a progressive-ratio schedule. At short pretreatment times (5–40 min), varenicline produced full or high levels of partial generalization to nicotine’s discriminative-stimulus effects and disrupted responding for food, while there were low levels of partial generalization and no disruption of responding for food at 2- or 4-hour pretreatment times. Varenicline (1 and 3 mg/kg, 2-hour pretreatment time) enhanced discrimination of low doses of nicotine and to a small extent decreased discrimination of the training dose of nicotine. It also dose-dependently decreased nicotine-taking behavior, but had no effect on food-taking behavior under progressive-ratio schedules. Finally, varenicline significantly reduced the ability of a nicotine-associated cue to reinstate extinguished nicotine-seeking behavior. The ability of varenicline to reduce both nicotine-taking and nicotine-seeking behavior can contribute to its relatively high efficacy in treating human smokers.
Since cloning of the dopamine receptor D4 (DRD4), its role in the brain has remained unclear. It has been reported that polymorphism of the DRD4 gene in humans is associated with reactivity to cues related to tobacco smoking. However, the role of DRD4 in animal models of nicotine addiction has seldom been explored. In our study, male Long-Evans rats learned to intravenously self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Effects of the selective DRD4 antagonist L-745,870 were evaluated on nicotine self-administration behavior and on reinstatement of extinguished nicotine-seeking behavior induced by nicotine-associated cues or by priming injections of nicotine. L-745,870 was also tested on reinstatement of extinguished food-seeking behavior as a control. In addition, the selective DRD4 agonist PD 168,077 was tested for its ability to reinstate extinguished nicotine-seeking behavior. Finally, L-745,870 was tested in Sprague Dawley rats trained to discriminate administration of 0.4 mg/kg nicotine from vehicle under an FR schedule of food delivery. L-745,870 significantly attenuated reinstatement of nicotine-seeking induced by both nicotine-associated cues and nicotine priming. In contrast, L-745,870 did not affect established nicotine self-administration behavior or reinstatement of food-seeking behavior induced by food cues or food priming. L-745,870 did not produce nicotine-like discriminative-stimulus effects and did not alter discriminative-stimulus effects of nicotine. PD 168,077 did not reinstate extinguished nicotine-seeking behavior. As DRD4 blockade by L-745,870 selectively attenuated both cue- and nicotine-induced reinstatement of nicotine-seeking behavior, without affecting cue- or food-induced reinstatement of food-seeking behavior, DRD4 antagonists are potential therapeutic agents against tobacco smoking relapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.