Exploring polymeric nanoplatforms combined with reactive oxygen species (ROS) responsiveness with mitochondria targeting has emerged as an effective strategy for enhanced photodynamic therapy (PDT). Amphiphilic copolymers were synthesized by reacting acrylamide thioketal (TK) linkers with amino-terminated triphenylphosphonium-polyethylene glycol and dodecylamine for encapsulating chlorin e6 (Ce6) via self-assembly. Then, anionic cladding with tumor targeting deshelled in tumor acidic microenvironments was surface-anchored by electrostatic forces (BioPEGDMA@RM). After sequential targeting to the mitochondria of cancerous cells, BioPEGDMA@RM could be light-activated with Ce6 released upon ROS cleavage of TK linkages. It was found that Ce6-loaded BioPEGDMA@RM exhibited higher cytotoxicity on CT26 cells and performed stronger ability on the production of ROS than that without TK linkers. Moreover, a minimum illumination of 3 and 5 min could be required for achieving the maximum release of Ce6 and high in vitro cytotoxicity for Ce6-loaded BioPEGDMA@RM, respectively. Furthermore, Ce6-loaded BioPEGDMA@RM showed 1.29-fold and 1.21-fold higher tumor inhibition on BALB/c nude mice and Kunming mice and stimulated immunologic reactions with more generation of IFN-γ and TNF-α and activation of CD3 + , CD4 + , and CD8 + T-lymphocytes and DCs than that of Ce6-loaded nanoparticles without TK bonds. This work provided an academic reference for the development of ROS-responsive drug delivery systems for advanced PDT efficiency.
Nano-drug carriers have been widely used in chemotherapy to improve the efficacy of chemotherapeutic drugs. Polymer nano carriers have more potential to enrich the chemotherapeutic drugs in the target tumor...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.