Detecting changed regions between two given synthetic aperture radar images is very important to monitor change of landscapes, change of ecosystem and so on. This can be formulated as a classification problem and addressed by learning a classifier, traditional machine learning classification methods very easily stick to local optima which can be caused by noises of data. Hence, we propose an unsupervised algorithm aiming at constructing a classifier based on self-paced learning. Self-paced learning is a recently developed supervised learning approach and has been proven to be capable to overcome effectively this shortcoming. After applying a pre-classification to the difference image, we uniformly select samples using the initial result. Then, self-paced learning is utilized to train a classifier. Finally, a filter is used based on spatial contextual information to further smooth the classification result. In order to demonstrate the efficiency of the proposed algorithm, we apply our proposed algorithm on five real synthetic aperture radar images datasets. The results obtained by our algorithm are compared with five other state-of-the-art algorithms, which demonstrates that our algorithm outperforms those state-of-the-art algorithms in terms of accuracy and robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.