Parking lots have many complex structures, diverse functions, and plentiful elements. The frequent flow of vehicles with narrow and dim spaces increases the probability of various traffic accidents. Due to the low severity and lack of relevant data, there is limited understanding of safety analyses for parking lot accidents. This study integrates multisource data to establish a Bayesian diagnostic model for parking lot accidents. The mutual information method is used to screen the possible influencing factors before modeling to reduce the subjectivity of Bayesian networks. Studying the cause and effect analysis of accidents provides diagnosis and prediction for property damage and event causes. This provides valuable correlation information between factors and accident characteristics, as well as consequences under the influence of multiple factor chains. As the developed model has good accuracy, this study proposes a parking lot safety evaluation system with a library of countermeasures based on the model results to ensure rigorous conclusions. The combination with ITS technology gives the system high scalability and adaptability in multiple scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.