The mammalian Golgi apparatus is composed of stacks of cisternae that are laterally linked to form a continuous ribbon like structure, but the molecular mechanisms that maintain the Golgi ribbon remain unclear. Here, we show that ribbon formation is mediated by biomolecular condensates of RNA and the Golgi resident protein GM130. We identified GM130 as a membrane-bound RNA binding protein at the Golgi. Acute degradation of either RNA or GM130 in cells disrupted the Golgi ribbon. Under stress conditions, RNA was displaced from GM130 and the ribbon was disjoint, which was restored after cells recovered from stress. When overexpressed in cells, GM130 formed RNA-dependent liquid-like condensates. GM130 contains an intrinsically disordered domain at its N-terminus, which was sufficient to recruit RNA to drive condensate assemblyin vitro. Condensates of the N-terminal domain of GM130 and RNA were sufficient to link purified rat liver Golgi membranes which is a reconstruction of aspects of lateral linking of stacks into a ribbon-like structure. Together, these studies reveal that biomolecular condensates of GM130-RNA scaffold the Golgi ribbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.