As the demand for wearable electronic devices increases, interest in small, light, and deformable energy storage devices follows suit. Among these devices, wire-shaped supercapacitors (WSCs) are considered key components of wearable technology due to their geometric similarity to woven fiber. One potential method for creating WSC devices is the layer-by-layer (LbL) assembly technique, which is a "bottom-up" method for electrode fabrication. WSCs require conformal and adhesive coatings of the functional material to the wire-shaped substrate, which is difficult to obtain with other processing techniques such as vacuum filtration or spray-coating. However, the LbL assembly technique produces conformal and robust coatings that can be deposited onto a variety of substrates and shapes, including wires. In this study, we report WSCs made using the LbL assembly of alternating layers of positively charged reduced graphene oxide functionalized with poly-(diallyldimethylammonium chloride) and negatively charged Ti 3 C 2 T x MXene nanosheets conformally deposited on activated carbon yarns. In this construct, the added LbL film enhances capacitance, energy density, and power density by 240, 227, and 109%, respectively, relative to the uncoated activated carbon yarn, yielding high specific and volumetric capacitances (237 F g −1 , 2193 F cm −3 ). In addition, the WSC possesses good mechanical stability, retaining 90% of its initial capacity after 200 bending cycles. This study demonstrates that LbL coatings on carbon yarns are promising as linear energy storage devices for fibrous electronics.
Structural energy storage materials refer to a broad category of multifunctional materials which can simultaneously provide load bearing and energy storage to achieve weight reduction in weight-sensitive applications. Reliable and satisfactory performance in each function, load bearing or energy storage, requires peculiar material design with potential trade-offs between them. Here, the trade-offs between functionalities in an emerging class of nanomaterials, carbon nanofibers (CNFs), are unraveled. The CNFs are fabricated by emulsion and coaxial electrospinning and activated by KOH at different activation conditions. The effect of activation on supercapacitor performance is analyzed using two electrode test cells with aqueous electrolyte. Porous CNFs show promising energy storage capacity (191.3 F g −1 and excellent cyclic stability) and load-bearing capability (σ f > 0.55 ± 0.15 GPa and E > 27.4 ± 2.6 GPa). While activation enhances surface area and capacitance, it introduces flaws in the material, such as nanopores, reducing mechanical properties. It is found that moderate activation can lead to dramatic improvement in capacitance (by >300%), at a rather moderate loss in strength (<17%). The gain in specific surface area and capacitance in CNFs is many times those observed in bulk carbon structures, such as carbon fibers, indicating that activation is mainly effective near the free surfaces and for low-dimensional materials.
The application of nontoxic 2D transition-metal carbides (MXenes) has recently gained ground in bioelectronics. In group-4 transition metals, tantalum possesses enhanced biological and physical properties compared to other MXene counterparts. However, the application of tantalum carbide for bioelectrodes has not yet been explored. Here, fluorine-free exfoliation and functionalization of tantalum carbide MAX-phase to synthesize a novel Ta 4 C 3 T x MXene-tantalum oxide (TTO) hybrid structure through an innovative, facile, and inexpensive protocol is demonstrated. Additionally, the application of TTO composite as an efficient biocompatible material for supercapacitor electrodes is reported. The TTO electrode displays long-term stability over 10 000 cycles with capacitance retention of over 90% and volumetric capacitance of 447 F cm −3 (194 F g −1 ) at 1 mV s −1 . Furthermore, TTO shows excellent biocompatibility with human-induced pluripotent stem cells-derived cardiomyocytes, neural progenitor cells, fibroblasts, and mesenchymal stem cells. More importantly, the electrochemical data show that TTO outperforms most of the previously reported biomaterials-based supercapacitors in terms of gravimetric/volumetric energy and power densities. Therefore, TTO hybrid structure may open a gateway as a bioelectrode material with high energystorage performance for size-sensitive applications.
Many multifunctional composite structures incorporate porosity at various length scales to increase the available surface area of a functional component. One material system of particular interest is activated or porous carbon fibers and nanofibers that can serve as structural reinforcement as well as providing active surface for added functionality. A key question in the design and manufacture of these fibers is to what degree the induced pore affects the mechanical properties by inducing discontinuities in the material. To address this problem, mechanics of porous carbon nanofibers (CNFs) was studied for the first time as a function of their porous structure. Hollow CNF with porous shell was prepared by coaxial electrospinning a polyacrylonitrile/poly(methyl methacrylate) (PMMA) blend shell with a PMMA core. PMMA was removed by thermal decomposition during pyrolysis to form pores. Solid-shell CNF was prepared as a control with no PMMA in the shell. Results show that the modulus and strength of the porous-shell CNF with a porosity of 19.2 ± 1.3% were 65.0 ± 6.2 and 1.28 ± 0.14 GPa respectively, 13.9 ± 2.1% and 35.5 ± 4.9% lower than those of the solid-shell CNF. Finite-element analysis models were developed to decouple the effect of stress concentration and reduced load-bearing area in porous CNFs on their mechanical properties. The model predictions were in general agreement with the experimental results and were used to identify the most critical parameters that can affect load bearing in porous nanofibers. Considering the comparison of the experimental and modeling results, the intrinsic material strength (of the solid parts) does not seem to be affected by inducing pores; thus, fiber and pore geometries might be developed where the load paths are designed for even less of a strength loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.