The purpose of this study is to implement speckle reduced three-dimensional (3-D) holographic display by single phase-only spatial light modulator (SLM). The complex amplitude of hologram is transformed to pure phase value based on double-phase method. To suppress noises and higher order diffractions, we introduced a 4-f system with a filter at the frequency plane. A blazing grating is proposed to separate the complex amplitude on the frequency plane. Due to the complex modulation, the speckle noise is reduced. Both computer simulation and optical experiment have been conducted to verify the effectiveness of the method. The results indicate that this method can effectively reduce the speckle in the reconstruction in 3-D holographic display. Furthermore, the method is free of iteration which allows improving the image quality and the calculation speed at the same time.
This paper presents a method for the implementation of speckle reduced lensless holographic projection based on phase-only computer-generated hologram (CGH). The CGH is calculated from the image by double-step Fresnel diffraction. A virtual convergence light is imposed to the image to ensure the focusing of its wavefront to the virtual plane, which is established between the image and the hologram plane. The speckle noise is reduced due to the reconstruction of the complex amplitude of the image via a lensless optical filtering system. Both simulation and optical experiments are carried out to confirm the feasibility of the proposed method. Furthermore, the size of the projected image can reach to the maximum diffraction bandwidth of the spatial light modulator (SLM) at a given distance. The method is effective for improving the image quality as well as the image size at the same time in compact lensless holographic projection system.
In this paper, we present a method for calculation of a computer-generated hologram (CGH) from a 3D object. A virtual wavefront recording plane (WRP) which is close to the 3D object is established. This WRP is nonuniformly sampled according to the depth map of the 3D object. The generation of CGH only involves two nonuniform fast Fourier transform (NUFFT) and two fast Fourier transform (FFT) operations, the whole computational procedure is greatly simplified by diffraction calculation from a 2D planar image instead of 3D object voxels. Numerical simulations and optical experiments are carried out to confirm the feasibility of our proposed method. The CGH calculated with our method is capable to project zoomable 3D objects without lens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.