One of the major challenges in hepatocellular carcinoma (HCC) treatment is drug resistance and low responsiveness to systemic therapies, partly due to insufficient T cell infiltration. Myeloid-derived suppressor cells (MDSCs) are immature marrow-derived cell populations with heterogeneity and immunosuppression characteristics and are essential components of the suppressive tumor immune microenvironment (TIME). Increasing evidence has demonstrated that MDSCs are indispensable contributing factors to HCC development in a T cell-dependent or non-dependent manner. Clinically, the frequency of MDSCs is firmly linked to HCC clinical outcomes and the effectiveness of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs). Furthermore, MDSCs can also be used as prognostic and predictive biomarkers for patients with HCC. Therefore, treatments reprograming MDSCs may offer potential therapeutic opportunities in HCC. Here, we recapitulated the dynamic relevance of MDSCs in the initiation and development of HCC and paid special attention to the effect of MDSCs on T cells infiltration in HCC. Finally, we pointed out the potential therapeutic effect of targeting MDSCs alone or in combination, hoping to provide new insights into HCC treatment.
Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.