Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
Harvesting pressure on Asian freshwater turtles is severe, and dramatic population declines of these turtles are being driven by unsustainable collection for food markets, pet trade, and traditional Chinese medicine. Populations of big-headed turtle (Platysternon megacephalum) have declined substantially across its distribution, particularly in China, because of overcollection. To understand the effects of chronic harvesting pressure on big-headed turtle populations, we examined the effects of illegal harvesting on the demography of populations in Hong Kong, where some populations still exist. We used mark-recapture methods to compare demographic characteristics between sites with harvesting histories and one site in a fully protected area. Sites with a history of illegal turtle harvesting were characterized by the absence of large adults and skewed ratios of juveniles to adults, which may have negative implications for the long-term viability of populations. These sites also had lower densities of adults and smaller adult body sizes than the protected site. Given that populations throughout most of the species' range are heavily harvested and individuals are increasingly difficult to find in mainland China, the illegal collection of turtles from populations in Hong Kong may increase over time. Long-term monitoring of populations is essential to track effects of illegal collection, and increased patrolling is needed to help control illegal harvesting of populations, particularly in national parks. Because few, if any, other completely protected populations remain in the region, our data on an unharvested population of big-headed turtles serve as an important reference for assessing the negative consequences of harvesting on populations of stream turtles. Evidencia Demográfica de la Captura Ilegal de una Tortuga Asiática en Peligro.
Populations of the big-headed turtle Platysternon megacephalum are declining at unprecedented rates across most of its distribution in Southeast Asia owing to unsustainable harvest for pet, food, and Chinese medicine markets. Research on Asian freshwater turtles becomes more challenging as populations decline and basic ecological information is needed to inform conservation efforts. We examined fecal samples collected from P. megacephalum in five streams in Hong Kong to quantify the diet, and we compared the germination success of ingested and uningested seeds. Fruits, primarily of Machilus spp., were most frequently consumed, followed by insects, plant matter, crabs and mollusks. The niche breadth of adults was wider than that of juveniles. Diet composition differed between sites, which may be attributable to the history of illegal trapping at some sites, which reduced the proportion of larger and older individuals. Digestion of Machilus spp. fruits by P. megacephalum enhanced germination success of seeds by about 30%. However, most digested seeds are likely defecated in water in this highly aquatic species, which limits the potential benefit to dispersal. The results of our study can be used by conservation-related captive breeding programs to ensure a more optimal diet is provided to captive P. megacephalum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.