Spatially separating electrons of different spins and efficiently generating spin currents are crucial steps towards building practical spintronics devices. Transverse magnetic focusing is a potential technique to accomplish both those tasks. In a material where there is significant Rashba spin–orbit interaction, electrons of different spins will traverse different paths in the presence of an external magnetic field. Experiments have demonstrated the viability of this technique by measuring conductance spectra that indicate the separation of spin-up and spin-down electrons. However the effect that the geometry of the leads has on these measurements is not well understood. By simulating an InGaAs-based transverse magnetic focusing device, we show that the resolution of features in the conductance spectra is affected by the shape, separation and width of the leads. Furthermore, the number of subbands occupied by the electrons in the leads affects the ratio between the amplitudes of the spin-split peaks in the spectra. We simulated devices with random onsite potentials and observed that transverse magnetic focusing devices are sensitive to disorder. Ultimately we show that careful choice and characterisation of device geometry are crucial for correctly interpreting the results of transverse magnetic focusing experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.