All-trans retinoic acid (ATRA), one of vitamin A derivatives, shows greater growth inhibition of breast cancer cell for ER-positive than ER-negative cells, while triple negative breast cancer cell such as MDA-MB-231 cell is poorly responsive to ATRA treatment. In this study, we found that combination of ω-3 free fatty acids (ω-3 FFAs) and ATRA exhibited synergistic inhibition of cell growth in three subtypes (ER+ MCF7, HER2+ SK-BR-3, Triple negative HCC1806 and MDA-MB-231 cells) of human breast cancer cell lines. The combined treatment of ω-3 FFAs and ATRA resulted in cell cycle arrest. ω-3 FFAs combined with ATRA synergistically provoked cell apoptosis via the caspase signals but not p53. These findings suggest that combined chemotherapy of ω-3 FFAs with ATRA is beneficial for improvement of ATRA sensitivity in breast cancer cells.
Retinoic acid (RA), is a promising therapeutic agent for the treatment of breast cancer. However, metabolic disorders and drug resistance reduce the efficacy of RA. In this study, we found that RA and ω-3 polyunsaturated fatty acids (ω-3 PUFAs) synergistically induced cell death in vitro and in vivo and autophagy activation. Moreover, RA-induced hypercholesterolemia was completely corrected by ω-3 PUFA supplementation. In addition, we demonstrated that the effects of this combination on the autophagic flux were independent of the two major canonic regulatory complexes controlling autophagic vesicle formation. The treatment activated Gαq-p38 MAPK signaling pathways, which resulted in autophagy of breast cancer cells. Knockdown of Gαq or P38 expression prevented RA and ω-3 PUFAs from inducing autophagy. Data indicated that Gαq-p38activation was mediated by the co-activation of GPR40 and RARα in lipid rafts, rather than by the activation of GPR120, RARβ, or RARγ. The results of this study suggest that hyperlipidemic drug side effects may be ameliorated by the administration of ω-3 PUFAs. Thus, the therapeutic indexes of the corresponding drugs may be increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.