Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used changedetection methods. However, CVA requires sound radiometric correction to achieve optimal performance, and PCC is susceptible to accumulated classification errors. Although change vector analysis in the posterior probability space (CVAPS) was developed to resolve the limitations of PCC and CVA, the uncertainty of remote sensing imagery limits the performance of CVAPS owing to three major problems: 1) mixed pixels, 2) identical ground cover type with different spectra, and 3) different ground cover types with the same spectrum. To address this problem, this study proposes the FCM-CSBN-CVAPS approach under the CVAPS framework. The proposed approach decomposes the mixed pixels in to m u l t i p l e s ig n a l c la s s e s u s in g th e fu z z y C m e a n s ( F C M ) algorithm. Although the mixed pixel problem is less severe in the high-resolution image, the change detection performance is still enhanced because, as a soft clustering algorithm, FCM is less susceptible to cumulative clustering error. Then, a contextsensitive Bayesian network (CSBN) is constructed to establish multiple-to-multiple stochastic linkages between signal pairs and ground cover types by incorporating spatial information to resolve problems 2 and 3 discussed above. Finally, change detection is performed using CVAPS in the posterior probability space. The effectiveness of the proposed approach is evaluated on three bitemporal remote sensing datasets with different spatial sizes and resolutions. The experimental results confirm the effectiveness of FCM-CSBN-CVAPS in addressing the uncertainty problems of change detection and its superiority over other relevant changedetection techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.