The development and application of marine current energy are attracting more and more attention around the world. Due to the hardness of its working environment, it is important and difficult to study the fault diagnosis of a marine current generation system. In this paper, an underwater image is chosen as the fault-diagnosing signal, after different sensors are compared. This paper proposes a diagnosis method based on the sparse autoencoder (SA) and softmax regression (SR). The SA is used to extract the features and SR is used to classify them. Images are used to monitor whether the blade is attached by benthos and to determine its corresponding degree of attachment. Compared with other methods, the experiment results show that the proposed method can diagnose the blade attachment with higher accuracy.
The development and application of marine current energy are attracting more and more attention in the world. Due to the hardness of its working environment, it is important and difficult to study the fault diagnosis of marine current generation system. In this paper, underwater image is chosen as the fault diagnosing signal after different sensors are compared. This paper proposes a diagnosis method based on the sparse autoencoder (SA) and softmax regression (SR). The SA is used to extract the features and SR is used to classify them. Images are used to monitor whether the blade is attached by benthos and to determine its corresponding degree of attachment. Compared with the other techniques, experiment results show that the proposed method can diagnose the blade attachment with higher accuracy.
The development and application of marine current energy are attracting more and more attention around the world. Due to the hardness of its working environment, it is important and difficult to study the fault diagnosis of a marine current generation system. In this paper, an underwater image is chosen as the fault-diagnosing signal, after different sensors are compared. This paper proposes a diagnosis method based on the sparse autoencoder (SA) and softmax regression (SR). The SA is used to extract the features and SR is used to classify them. Images are used to monitor whether the blade is attached by benthos and to determine its corresponding degree of attachment. Compared with other methods, the experiment results show that the proposed method can diagnose the blade attachment with higher accuracy.
To diagnose the attachment of marine current turbine, this article proposes a method based on convolutional neural network and the concepts of depthwise separable convolution to achieve feature extraction. The method consists of three steps: data preprocessing, feature extraction and fault diagnosis. This method can diagnose the fault degree of blade imbalance and uniform attachment in underwater environment with strong currents and complex spatiotemporal variability. It can extract distinct image feature in harsh marine environments by using a convolutional neural network. In addition, this method is robust for the recognition of blurred pictures under high-speed rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.