The microRNAs miR-17-5p and miR-20a-5p play important roles on angiogenesis; however, it is arguable whether they regulate the formation of retinal blood vessels in retinopathy of prematurity (ROP). We used a mouse model of oxygen-induced retinopathy (OIR) to simulate the development of retinas in mice suffering from ROP, and the expression levels of miR-20a-5p, miR-17-5p, hypoxia-inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF) were measured by RT-qPCR and Western blotting. Cell proliferation, apoptosis, and angiogenesis in the OIR model mice were measured using MTT assays, flow cytometry, and Matrigel assays, respectively. The interaction between HIF-1α/VEGF and miR-20a-5p/miR-17-5p were further validated using dual-luciferase reporter assays, biotin-labeled RNA-pulldown, and RNA immunoprecipitation (RIP) assays. In our OIR model, retinal angiogenesis in the mice was associated with down-regulation of miR-20a-5p and miR-17-5p, as well as up-regulation of HIF-1α and VEGF. In addition, the miR-20a-5p and miR-17-5p inhibited cell proliferation and angiogenesis through regulating HIF-1α and VEGF in the retinal cells of the OIR model mice. Moreover, it was found that miR-20a-5p and miR-17-5p bind to HIF-1α and VEGF at the 3′UTR, and there was a combined effect between miR-20a-5p and miR-17-5p on the regulation of HIF-1α and VEGF. It is worth noting that miR-17-5p and miR-20a-5p can preferentially regulate HIF-1α, then act on VEGF, thereby affecting the angiogenesis associated with ROP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.