A polarization filter array (PFA) camera is an imaging device capable of analyzing the polarization state of light in a snapshot manner. These cameras exhibit spatial variations, i.e., nonuniformity, in their response due to optical imperfections introduced during the nanofabrication process. Calibration is done by computational imaging algorithms to correct the data for radiometric and polarimetric errors. We reviewed existing calibration methods and applied them using a practical optical acquisition setup and a commercially available PFA camera. The goal of the evaluation is first to compare which algorithm performs better with regard to polarization error and then to investigate both the influence of the dynamic range and number of polarization angle stimuli of the training data. To our knowledge, this has not been done in previous work.
A Polarization Filter Array (PFA) camera is an imaging device capable of analyzing the polarization state of light in a snapshot way. These cameras exhibit spatial variations, i.e. nonuniformity, in their response due to optical imperfections introduced during the nanofabrication process. Calibration is done by computational imaging algorithms to correct the data for radiometric and polarimetric errors. In this paper, we review existing calibration procedures, and show a practical implementation result of one of these methods applied to a commercially available PFA camera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.