Objective. Despite converging neuroimaging studies investigating how neural activity is modulated by various motor related factors, such as movement velocity and force magnitude, little has been devoted to identifying the effect of force accuracy. This study thus aimed to investigate the effect of task difficulty on cortical neural responses when participants performed a visuomotor task with varying demands on force accuracy. Approach. Fourteen healthy adults performed a set of force generation operations with six levels of force accuracy. The participants held a pen-shaped tool and moved the tool along a planar ring path, meanwhile producing a constant force against the plane under visual guidance. The required force accuracy was modulated by allowable tolerance of the force during the task execution. We employed functional near-infrared spectroscopy to record signals from bilateral prefrontal, sensorimotor and occipital areas, used the hemoglobin concentration as indicators of cortical activation, then calculated the effective connectivity across these regions by Granger causality. Main results. We observed overall stronger activation (oxy-hemoglobin concentration, p = 0.015) and connectivity (p < 0.05) associated with the initial increase in force accuracy, and the diminished trend in activation and connectivity when participants were exposed to excessive demands on accurate force generation. These findings suggested that the increasing task difficulty would be only beneficial for the mental investment up to a certain point, and above that point neural responses would show patterns of lower activation and connections, revealing mental overload at excessive task demands. Significance. Our results provide the first evidence for the inverted U-shaped effect of force accuracy on hemodynamic responses during fine visuomotor tasks. The insights obtained through this study also highlight the essential role of inter-region connectivity alterations for coping with task difficulty, enhance our understanding of the underlying motor neural processes, and provide the groundwork for developing adaptive neurorehabilitation strategies.
Mind wandering happens when one train of thought, related to a current undertaking, is interrupted by unrelated thoughts. The detection and evaluation of mind wandering can greatly help in understanding the attention control mechanism during certain focal tasks. Subjective assessments such as random thought-probe and spontaneous self-report are the ways previous research has assessed mind wandering. Here we propose a task in which participants are asked to simultaneously control respiration and fingertip pressure. They are instructed to click a force sensor at the exact moment of inhalation and exhalation of their respiration. The temporal synchronization between the respiratory signals and the fingertip force pulses offers an objective index to detect mind wandering. Twelve participants engaged in the proposed task in which self-reports of mind wandering are compared with the proposed objective index. The results show that the participants reported significantly more mind-wandering episodes during the trials with a larger temporal synchronization than they did during those trials with a smaller temporal synchronization. The findings suggest that the temporal synchronization might be used as an objective marker of mind wandering in attention training and exploration of the attention control mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.