Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which kills 1.8 million annually. Mtb RNA polymerase (RNAP) is the target of the first-line antituberculosis drug rifampin (Rif). We report crystal structures of Mtb RNAP, alone and in complex with Rif, at 3.8–4.4 Å resolution. The results identify an Mtb-specific structural module of Mtb RNAP and establish that Rif functions by a steric-occlusion mechanism that prevents extension of RNA. We also report non-Rif-related compounds–Nα-aroyl-N-aryl-phenylalaninamides (AAPs)–that potently and selectively inhibit Mtb RNAP and Mtb growth, and we report crystal structures of Mtb RNAP in complex with AAPs. AAPs bind to a different site on Mtb RNAP than Rif, exhibit no cross-resistance with Rif, function additively when co-administered with Rif, and suppress resistance emergence when co-administered with Rif.
Summary Identifying genic male‐sterility (GMS) genes and elucidating their roles are important to unveil plant male reproduction and promote their application in crop breeding. However, compared with Arabidopsis and rice, relatively fewer maize GMS genes have been discovered and little is known about their regulatory pathways underlying anther and pollen development. Here, by sequencing and analysing anther transcriptomes at 11 developmental stages in maize B73, Zheng58 and M6007 inbred lines, 1100 transcription factor (TF) genes were identified to be stably differentially expressed among different developmental stages. Among them, 14 maize TF genes (9 types belonging to five TF families) were selected and performed CRISPR/Cas9‐mediated gene mutagenesis, and then, 12 genes in eight types, including ZmbHLH51, ZmbHLH122, ZmTGA9‐1/‐2/‐3, ZmTGA10, ZmMYB84, ZmMYB33‐1/‐2, ZmPHD11 and ZmLBD10/27, were identified as maize new GMS genes by using DNA sequencing, phenotypic and cytological analyses. Notably, ZmTGA9‐1/‐2/‐3 triple‐gene mutants and ZmMYB33‐1/‐2 double‐gene mutants displayed complete male sterility, but their double‐ or single‐gene mutants showed male fertility. Similarly, ZmLBD10/27 double‐gene mutant displayed partial male sterility with 32.18% of aborted pollen grains. In addition, ZmbHLH51 was transcriptionally activated by ZmbHLH122 and their proteins were physically interacted. Molecular markers co‐segregating with these GMS mutations were developed to facilitate their application in maize breeding. Finally, all 14‐type maize GMS TF genes identified here and reported previously were compared on functional conservation and diversification among maize, rice and Arabidopsis. These findings enrich GMS gene and mutant resources for deeply understanding the regulatory network underlying male fertility and for creating male‐sterility lines in maize.
The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA > C16:0-CoA > C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines.
Male sterility represents an important trait for hybrid breeding and seed production in crops. Although the genes required for male fertility have been widely studied and characterized in many plant species, most of them are single genic male-sterility (GMS) genes. To investigate the role of multiple homologous genes in anther and pollen developments of maize, we established the CRISPR/Cas9-based gene editing method to simultaneously mutate the homologs in several putative GMS gene families. By using the integrated strategies of multi-gene editing vectors, maize genetic transformation, mutation-site analysis of T0 and F1 plants, and genotyping and phenotyping of F2 progenies, we further confirmed gene functions of every member in ZmTGA9-1/-2/-3 family, and identified the functions of ZmDFR1, ZmDFR2, ZmACOS5-1, and ZmACOS5-2 in controlling maize male fertility. Single and double homozygous gene mutants of ZmTGA9-1/-2/-3 did not affect anther and pollen development, while triple homozygous gene mutant resulted in complete male sterility. Two single-gene mutants of ZmDFR1/2 displayed partial male sterility, but the double-gene mutant showed complete male sterility. Additionally, only the ZmACOS5-2 single gene was required for anther and pollen development, while ZmACOS5-1 had no effect on male fertility. Our results show that the CRISPR/Cas9 gene editing system is a highly efficient and convenient tool for identifying multiple homologous GMS genes. These findings enrich GMS genes and mutant resources for breeding of maize GMS lines and promote deep understanding of the gene family underlying pollen development and male fertility in maize.
Summary Anther cuticle and pollen exine are two crucial lipid layers that ensure normal pollen development and pollen–stigma interaction for successful fertilization and seed production in plants. Their formation processes share certain common pathways of lipid biosynthesis and transport across four anther wall layers. However, molecular mechanism underlying a trade‐off of lipid‐metabolic products to promote the proper formation of the two lipid layers remains elusive. Here, we identified and characterized a maize male‐sterility mutant pksb, which displayed denser anther cuticle but thinner pollen exine as well as delayed tapetal degeneration compared with its wild type. Based on map‐based cloning and CRISPR/Cas9 mutagenesis, we found that the causal gene (ZmPKSB) of pksb mutant encoded an endoplasmic reticulum (ER)‐localized polyketide synthase (PKS) with catalytic activities to malonyl‐CoA and midchain‐fatty acyl‐CoA to generate triketide and tetraketide α‐pyrone. A conserved catalytic triad (C171, H320 and N353) was essential for its enzymatic activity. ZmPKSB was specifically expressed in maize anthers from stages S8b to S9‐10 with its peak at S9 and was directly activated by a transcription factor ZmMYB84. Moreover, loss function of ZmMYB84 resulted in denser anther cuticle but thinner pollen exine similar to the pksb mutant. The ZmMYB84‐ZmPKSB regulatory module controlled a trade‐off between anther cuticle and pollen exine formation by altering expression of a series of genes related to biosynthesis and transport of sporopollenin, cutin and wax. These findings provide new insights into the fine‐tuning regulation of lipid‐metabolic balance to precisely promote anther cuticle and pollen exine formation in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.