Lung cancer is one of the most aggressive tumours with very low life expectancy. Altered microRNA expression is found in human tumours because it is involved in tumour growth, progression and metastasis. In this study, we analysed microRNA expression in 47 lung cancer biopsies. Among the most downregulated microRNAs we focussed on the miR-99a characterisation. In vitro experiments showed that miR-99a expression decreases the proliferation of H1650, H1975 and H1299 lung cancer cells causing cell cycle arrest and apoptosis. We identified two novel proteins, E2F2 (E2F transcription factor 2) and EMR2 (EGF-like module-containing, mucin-like, hormone receptor-like 2), downregulated by miR-99a by its direct binding to their 3′-UTR. Moreover, miR-99a expression prevented cancer cell epithelial-to-mesenchymal transition (EMT) and repressed the tumourigenic potential of the cancer stem cell (CSC) population in both these cell lines and mice tumours originated from H1975 cells. The expression of E2F2 and EMR2 at protein level was studied in 119 lung cancer biopsies. E2F2 and EMR2 are preferentially expressed in adenocarcinomas subtypes versus other tumour types (squamous and others). Interestingly, the expression of E2F2 correlates with the presence of vimentin and both E2F2 and EMR2 correlate with the presence of β-catenin. Moreover, miR-99a expression correlates inversely with E2F2 and directly with β-catenin expression in lung cancer biopsies. In conclusion, miR-99a reveals two novel targets E2F2 and EMR2 that play a key role in lung tumourigenesis. By inhibiting E2F2 and EMR2, miR-99a represses in vivo the transition of epithelial cells through an EMT process concomitantly with the inhibition of stemness features and consequently decreasing the CSC population.
Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ). Treatment with IL-6 significantly promoted the proliferation and collagen production of cultured cardiac fibroblasts (CFs). High glucose treatment increased collagen production, which were mitigated in CFs from IL-6 KO mice. Moreover, IL-6 knockout alleviated the up-regulation of TGFβ1 in diabetic hearts of mice and cultured CFs treated with high glucose or IL-6. Furthermore, the expression of miR-29 reduced upon IL-6 treatment, while increased in IL-6 KO hearts. Overexpression of miR-29 blocked the pro-fibrotic effects of IL-6 on cultured CFs. In summary, deletion of IL-6 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The mechanism involves the regulation of IL-6 on TGFβ1 and miR-29 pathway. This study indicates the therapeutic potential of IL-6 suppression on diabetic cardiomyopathy disease associated with fibrosis.
Heart failure (HF) is a major cause of morbidity and mortality in patients with various cardiovascular diseases. Restoration of cardiac function is critical in improving the clinical outcomes of patients with HF. Long noncoding RNAs are widely involved in the development of multiple cardiac diseases, whereas their role in regulating cardiac function remains unclear. In this study, we found that the expression of long noncoding RNA–DACH1 (dachshund homolog 1) was upregulated in the failing hearts of mice and human. We tested the hypothesis that the intronic long noncoding RNA of DACH1 (LncDACH1) can participate in the regulation of cardiac function and HF. Transgenic overexpression of LncDACH1 in the cardiac myocytes of mice led to impaired cardiac function, reduced calcium transient and cell shortening, and decreased SERCA2a (sarcoplasmic reticulum calcium ATPase 2a) protein expression. In contrast, conditional knockout of LncDACH1 in cardiac myocytes resulted in increased calcium transient, cell shortening, SERCA2a protein expression, and improved cardiac function of transverse aortic constriction induced HF mice. The same qualitative data were obtained by overexpression or knockdown of LncDACH1 with adenovirus carrying LncDACH1 or its siRNA. Moreover, therapeutic administration of adenovirus carrying LncDACH1 siRNA to transverse aortic constriction mice abolished the development of HF. Mechanistically, LncDACH1 directly binds to SERCA2a. Overexpression of LncDACH1 augments the ubiquitination of SERCA2a. LncDACH1 upregulation impairs cardiac function by promoting ubiquitination-related degradation of SERCA2a.
A mild and metal‐free DEAD‐promoted (DEAD = diethyl azodicarboxylate) oxidative Ugi‐type reaction of tertiary amines has been demonstrated. The reaction gives easy access to α‐amino amides and imides with diverse functional groups in good isolated yields. This Ugi‐type approach achieves an unprecedented synthesis of α‐amino amide analogues with the assistance of dicarboxylic acids, and not water, for the introduction of the carbonyl oxygen atom of the amide moiety. Mechanistic studies indicated that the dicarboxylic acids may readily undergo an intramolecular annulation, instead of the Mumm rearrangement, to give the desired amide with one molecule of anhydride released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.