This study is the first in the region to use Global Precipitation Mission Dual-Frequency Precipitation Radar (GPM-DPR) and Fengyun-2G (FY-2G) observations to qualitatively and quantitatively study the Southwest Vortex evolution characteristics during the flood season from 2019 to 2021. Furthermore, vertical characteristics of the two main precipitation types in the Southwest Vortex, stratiform and convective, were statistically analyzed at different life stages, including horizontal and vertical distribution of precipitation particles, droplet spectrum characteristics, and vertically layered precipitation contribution. The results showed that: (1) The typical convective precipitation (CP) in the developing and mature stages has strong reflectivity distribution centers in the upper and lower layers, showing characteristics related to terrain. Additionally, the high-level hydrometeor particles are mainly solid precipitation particles, and particles in the lower layers collide and coalesce in the violent vertical motion of the airflow. (2) For the three stages of CP, the reflectivity below melting layer (ML) first showed a rapid weakening trend toward the surface and then remained unchanged, significantly changing its vertical structure. The main rainfall type of the Southwest Vortex system was stratiform precipitation (SP) in the three stages. (3) In the two types of cloud precipitation, the developing stage is generally composed of large and sparse precipitation particles, the mature stage of large and dense precipitation particles, and the dissipating stage of small and sparse precipitation particles. The findings of this study reveal the three-dimensional refined structure and vertical variation characteristics of different life stages of the Southwest Vortex precipitation cloud system and provide important tools and references for improving the accuracy of numerical models and the forecast level of short-term heavy precipitation under complex terrain.
In recent years, China has suffered from frequent extreme precipitation events, and predicting their future trends has become an essential part of the current research on this issue. Because of the inevitable uncertainties associated with individual models for climate prediction, this study uses a machine learning approach to integrate and fit multiple models. The results show that the use of several evaluation metrics provides better results than the traditional ensemble median method. The correlation coefficients with the actual observations were found to improve from about 0.8 to 0.9, while the correlation coefficients of the precipitation amount (PRCPTOT), very heavy precipitation days (R20mm), and extreme precipitation intensity (SDII95) reached 0.95. Based on this, the precipitation simulations of moderate forced scenario for sharing socio-economic path (SSP2-4.5) from 27 coupled models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) were used to explore potential changes in future extreme precipitation events in China and to calculate the distribution and trends of the PRCPTOT, extreme precipitation amount (R95pTOT), maximum consecutive 5-day precipitation (Rx5day), precipitation intensity (SDII), SDII95, and R20mm for the early 21st century (2023–2050), mid-21st century (2051–2075), and late 21st century (2076–2100), respectively. The results showed that the most significant increase in extreme precipitation indices is expected to occur by the end of the century, with the R95pTOT, Rx5day, and SDII95 increasing by 13.73%, 9.43%, and 9.34%, respectively, from the base period. The remaining three precipitation indexes, the PRCPTOT, SDII, and R20mm, also showed increases of 8.77%, 6.84%, and 4.02%, respectively. Additionally, there were apparent differences in the spatial variation of extreme precipitation. There were significant increasing trends of extreme precipitation indexes in central China and northeast China in the three periods, among which the total annual precipitation showed an increasing trend in central and northern China and a decreasing trend in western and south China. An increasing trend of annual precipitation intensity was found to be mainly concentrated in central China and south China, and the annual precipitation frequency showed a larger increasing trend at the beginning of this century. The annual precipitation frequency showed an increasing trend in the early part of this century. In general, all the indices showed an overall increasing trend in the future period, with the PRCPTOT, Rx5day, and SDII95 showing the most significant overall increasing trends.
China has undergone rapid urbanization over the past few decades, and accordingly, changes have occurred in the extreme precipitation events. However, few studies have focused on the relationships between rapid urbanization and extreme precipitation events in southwest China, particularly in the Sichuan–Chongqing area, which has a complex topography and has experienced rapid urbanization over the past few decades. This is the first study to analyze the impact of urbanization on the amount, frequency, and intensity of extreme summer (June–August) precipitation events over the past 30 years. Our results indicate that extreme precipitation events primarily occurred in the urban-dominated Sichuan basin, particularly during the fast urbanization development stage (FUDS) of 1994–2015. Extreme precipitation amounts and intensities increased during the FUDS, implying the greater probability of individual precipitation events developing into heavy or extreme events in a particular area. In addition, the probability distribution functions of the occurrence and volume of strong convective events significantly increased during the FUDS. Finally, the annual increase in urban-scale land surface air temperature, increase in wet convection, and changes in wind speed are identified as essential factors leading to extreme precipitation events in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.