Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on “healthy aging” raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant. Supporting Information The supporting information is available online at 10.1007/s11427-023-2305-0. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
BackgroundVitamin C (VitC) has recently been shown to exert beneficial effects, including protecting organ function and inhibiting inflammation, in various critical care conditions, but the specific mechanism remains unclear. Induction of heme oxygenase (HO)-1, a heat shock protein, has been shown to prevent organ injuries in hemorrhagic shock (HS) but the relationship between VitC and HO-1 are still ill-defined so far. Here we conducted a systemic in vivo study to investigate if VitC promoted HO-1 expression in multiple organs, and then tested if the HO-1 induction property of VitC was related to its organ protection and anti-inflammatory effect.MethodsFirstly, to determine the HO-1 induction property of VitC, the HO-1 level were measured in tissues including kidney, liver and lung of the normal and HS model of Sprague–Dawley (SD) rats after VitC treatment (100 mg/kg body weight). Secondly, to testify if VitC prevented HS related organ injuries via inducing HO-1, the HS model of rats were separately pre- and post-treated with VitC, and some of them also received Zinc protoporphyrin (Znpp), a specific HO-1 inhibitor. The HO-1 activity in tissues was tested; the organ injuries (as judged by histological changes in tissues and the biochemical indicators level in serum) and inflammatory response in tissues (as judged by the level of pro-inflammatory cytokines Tumor necrosis factor-α and Interleukin-6 ) were analyzed.ResultsThe HO-1 mRNA and protein level in kidney, liver, and lung were highly induced by VitC treatement under normal and HS conditions. The HO-1 activity in tissues was enhanced by both VitC pre- and post-treatment, which was shown to improve the organ injuries and inhibit the inflammatory response in the HS model of rats. Of note, the beneficial effects of VitC were abolished after HO-1 activity was blocked by Znpp.ConclusionsVitC led to a profound induction of HO-1 in multiple organs including the kidney, liver and lung, and this property might be responsible for the organ protection and inflammation inhibitory effects of both pre- and post-treatment with VitC in HS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.