Highlights d AI system that can diagnose COVID-19 pneumonia using CT scans d Prediction of progression to critical illness d Potential to improve performance of junior radiologists to the senior level d Can assist evaluation of drug treatment effects with CT quantification
Open physical systems with balanced loss and gain, described by non-Hermitian parity-time reflection symmetric Hamiltonians, exhibit a transition which could engender modes that exponentially decay or grow with time, and thus spontaneously breaks the -symmetry. Such -symmetry-breaking transitions have attracted many interests because of their extraordinary behaviors and functionalities absent in closed systems. Here we report on the observation of -symmetry-breaking transitions by engineering time-periodic dissipation and coupling, which are realized through state-dependent atom loss in an optical dipole trap of ultracold 6Li atoms. Comparing with a single transition appearing for static dissipation, the time-periodic counterpart undergoes -symmetry breaking and restoring transitions at vanishingly small dissipation strength in both single and multiphoton transition domains, revealing rich phase structures associated to a Floquet open system. The results enable ultracold atoms to be a versatile tool for studying -symmetric quantum systems.
Highlights d A comprehensive and quantitative map of the mouse cysteine redox proteome in vivo d Redox networks are highly tissue selective and underlie tissue-specific biology d Cysteine thiol redox sensitivity is encoded by local electrostatic gating d Identification of redox-modified protein disease networks that remodel in aged mice
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.