Highlights d AI system that can diagnose COVID-19 pneumonia using CT scans d Prediction of progression to critical illness d Potential to improve performance of junior radiologists to the senior level d Can assist evaluation of drug treatment effects with CT quantification
It was recently brought to our attention that our paper was missing information regarding when the patient chest computed tomography (CT) scans were obtained and that there were some discrepancies in the clinical metadata, associated with the very large image dataset, that we made publicly available through the China National Center for Bioinformation (http://ncov-ai.big.ac.cn/ download?lang=en). All of the chest CT and clinical metadata used in our prognostic analysis were collected from patients at the time of hospital admission, and we have now added this statement to the STAR Methods section of our paper. We believe that the errors in the clinical metadata were introduced when the chest CT images, clinical metadata, and codes were transferred to the web server, and we have now corrected the errors manually. Although these corrections do not alter any of the conclusions made in the paper, we do apologize for these errors and any confusion that they may have caused.
Cell-free DNA (cfDNA) released from damaged or dead cells can activate DNA sensors that exacerbate the pathogenesis of rheumatoid arthritis (RA). Here we show that ~40 nm cationic nanoparticles (cNP) can scavenge cfDNA derived from RA patients and inhibit the activation of primary synovial fluid monocytes and fibroblast-like synoviocytes. Using clinical scoring, micro-CT images, MRI, and histology, we show that intravenous injection of cNP into a CpG-induced mouse model or collagen-induced arthritis rat model can relieve RA symptoms including ankle and tissue swelling, and bone and cartilage damage. This culminates in the manifestation of partial mobility recovery of the treated rats in a rotational cage test. Mechanistic studies on intracellular trafficking and biodistribution of cNP, as well as measurement of cytokine expression in the joints and cfDNA levels in systemic circulation and inflamed joints also correlate with therapeutic outcomes. This work suggests a new direction of nanomedicine in treating inflammatory diseases.
Multifunctional nanodrugs integrating multiple therapeutic and imaging functions may find tremendous biomedical applications. However, the development of a simple yet potent theranostic nanosystem with a high payload and microenvironment responsiveness enhancing imaging‐guided cancer therapy is still a great challenge. Herein, a kind of MnCO‐entrapped mesoporous polydopamine nanoparticles are developed, which reach a 1.5 mg payload per gram carrier and exhibit marked theranostic capability through effective CO/Mn2+ generation and photothermal conversion inside the H+ and H2O2‐enriched tumor microenvironment, for a magnetic resonance/photoacoustic bimodal imaging‐guided tumor therapy. The multifunctional nanosystem exhibits a biocompatibility highly desirable for in vivo application and superior performance in inhibiting tumor growth and recurrence via combination CO and photothermal therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.