COVID-19 is an important threat worldwide. This disease is caused by the novel SARS-CoV-2. CXR and CT images reveal specific information about the disease. However, when interpreting these images, experiencing an overlap with other lung infections complicates the detection of the disease. Due to this situation, the need for computer-aided systems is increasing day by day. In this study, solutions were developed with proposed models based on deep neural networks (DNN). All analyzes were performed on CXR data received on the publicly available. This paper offers a comparison of the deep learning models (SqueezeNet, Inception-V3, VGG16, MobileNet, Xception, VGG19+MobileNet (Concatenated)) that results in the detection and classification of disease. Empirical evaluations demonstrate that the Inception-V3 model gives 90% accuracy with 100% precision for the COVID-19 infection. This model has been provided with better results compared to other models.