Stringent particulate emission regulations are applied to spark-ignition direct-injection (SIDI) engines, calling for a significant in-cylinder reduction of soot particles. To enhance fundamental knowledge of the soot formation and oxidation process inside the cylinder of the engine, a new in-flame particle sampling system has been developed and implemented in a working optical SIDI engine with a side-mounted, wall-guided injection system. Using the sampling probes installed on the piston top, the soot particles are directly sampled from the petrol flame for detailed analysis of particle size distribution, structure and shape. At the probe tip, a transmission electron microscope (TEM) grid is stored for the soot collection via thermophoresis, which is imaged and post-processed for statistical analysis. Simultaneously, the flame development was recorded using two highspeed cameras to evidence the direct exposure of the sampling grids to the soot-laden diffusion flames and pool fires. The focus of the present study is the uncertainty analysis of this newly developed technique through variation of the number of injection cycles, cyclic variations, and sampling locations at fixed fuel injection and firing conditions. From the engine runs of 3, 5 and 7 injection cycles, it was found that the number of sampled soot aggregates increases with increasing injection cycles but the soot morphology does not change significantly. However, the cyclic variations make a significant impact such that the size of soot aggregates increases with higher peak in-cylinder pressure and earlier combustion phasing, which was observed from 6 different engine runs at fixed 5 injection cycle tests. The sampling experiment was also performed with the probes installed at four different locations across the piston top, which showed significant variations in morphology such that soot primary particles and aggregates become larger due to longer soot residence time within the wall wetting-induced pool fire.
This study measures in-flame flow fields in a single-cylinder small-bore optical diesel engine using Flame Image Velocimetry (FIV) applied to high-speed soot luminosity movies. Three injection pressures were tested for a two-hole nozzle injector to cause jet-wall interaction and a significant jet-jet interaction within 45° inter-jet spacing. The high-pressure fuel jets were also under the strong influence of a swirl flow. For each test condition, soot luminosity signals were recorded at a high framing rate of 45 kHz with which the time-resolved, two-dimensional FIV post-processing was performed based on the image contrast variations associated with flame structure evolution and internal pattern change. A total of 100 combustion events for each injection pressure were recorded and processed to address the inherent cyclic variations. The ensemble-averaged flow fields were used for detailed flow structure discussion, and Reynolds decomposition using a spatial filtering method was applied to obtain high-frequency fluctuations that were found to be primarily turbulence. The detailed analysis of flow fields suggested that increased injection pressure leads to enhanced jet flow travelling along the bowl wall and higher flow vectors penetrating back towards the nozzle upon the impingement on the wall. Within the jet-jet interaction region, the flow vectors tend to follow the swirl direction, which increases with increasing injection pressure. The FIV also captured a turbulent ring vortex formed in the wall-jet head, which becomes larger and clearer at higher injection pressure. A vortex generated in the centre of combustion chamber was due to the swirl flow with its position being shifted at higher injection pressure. The bulk flow magnitude indicated significant cyclic variations, which increases with injection pressure. The turbulence intensity is also enhanced due to higher injection pressure, which primarily occurs in the wall-jet head region and the jet-jet interaction region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.