A reversible 2H-to-1T phase transition in a MoS2 monolayer is realized by plasmonic hot electrons. This transition can be actively controlled by the incident light intensity, wavelength, sample areas, and perimeters, resulting in an effective shift of photoluminescence. The suggested configuration paves the way for plasmonic optoelectronic device applications of MoS2 in the future.
Mechanosensitive ion channels convert mechanical stimuli into a flow of ions. These channels are widely distributed from bacteria to higher plants and humans, and are involved in many crucial physiological processes. Here we show that two members of the OSCA protein family in Arabidopsis thaliana, namely AtOSCA1.1 and AtOSCA3.1, belong to a new class of mechanosensitive ion channels. We solve the structure of the AtOSCA1.1 channel at 3.5-Å resolution and AtOSCA3.1 at 4.8-Å resolution by cryo-electron microscopy. OSCA channels are symmetric dimers that are mediated by cytosolic inter-subunit interactions. Strikingly, they have structural similarity to the mammalian TMEM16 family proteins. Our structural analysis accompanied with electrophysiological studies identifies the ion permeation pathway within each subunit and suggests a conformational change model for activation.
Plasmonic excitation of Au nanoparticles deposited on a MoS2 monolayer changes the absorption and photoluminescence characteristics of the material. Hot electrons generated from the Au nanoparticles are transferred into the MoS2 monolayers, resulting in n-doping. The doping effect of plasmonic hot electrons modulates the dielectric permittivity of materials, resulting in a red shift of both the absorption and the photoluminescence spectrum. This spectroscopic tuning was further investigated experimentally by using different Au nanoparticle concentrations, excitation laser wavelengths, and intensities. An analytical model for the photoinduced modulation of the MoS2 dielectric function and its exciton binding energy change is developed and used to estimate the doping density of plasmonic hot electrons. Our approach is important for the development of photonic devices for active control of light by light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.