Early insights into the unique structure and properties of native silk suggested that β-sheet nanocrystallites in silk would degrade prior to melting when subjected to thermal processing. Since then, canonical approaches for fabricating silk-based materials typically involve solutionderived processing methods, which have inherent limitations with respect to silk protein solubility, stability in solution, and time and cost efficiency. Here we report a thermal processing method for the direct solid-state molding of regenerated silk into bulk 'parts' or devices with tunable mechanical properties. At elevated temperature and pressure, regenerated amorphous silk nanomaterials with ultralow β-sheet content undergo thermal fusion via molecular rearrangement and self-assembly assisted by bound water to form a robust bulk material that retains biocompatibility, degradability and machinability. This technique reverses presumptions about the limitations of direct thermal processing of silk into a wide range of new material formats and composite materials with tailored properties and functionalities. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Background2,3-Butanediol (2,3-BD) can be used as a liquid fuel additive to replace petroleum oil, and as an important platform chemical in the pharmaceutical and plastic industries. Microbial production of 2,3-BD by Bacillus licheniformis presents potential advantages due to its GRAS status, but previous attempts to use this microorganism as a chassis strain resulted in the production of a mix of D-2,3-BD and meso-2,3-BD isomers.ResultsThe aim of this work was to develop an engineered strain of B. licheniformis suited to produce the high titers of the pure meso-2,3-BD isomer. Glycerol dehydrogenase (Gdh) was identified as the catalyst for D-2,3-BD biosynthesis from its precursor acetoin in B. licheniformis. The gdh gene was, therefore, deleted from the wild-type strain WX-02 to inhibit the flux of acetoin to D-2,3-BD biosynthesis. The acoR gene involved in acetoin degradation through AoDH ES was also deleted to provide adequate flux from acetoin towards meso-2,3-BD. By re-directing the carbon flux distribution, the double-deletion mutant WX-02ΔgdhΔacoR produced 28.2 g/L of meso-2,3-BD isomer with >99 % purity. The titer was 50 % higher than that of the wide type. A bench-scale fermentation by the double-deletion mutant was developed to further improve meso-2,3-BD production. In a fed-batch fermentation, meso-2,3-BD titer reached 98.0 g/L with a purity of >99.0 % and a productivity of 0.94 g/L–h.ConclusionsThis work demonstrates the potential of producing meso-2,3-BD with high titer and purity through metabolic engineering of B. licheniformis.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0522-1) contains supplementary material, which is available to authorized users.
ObjectivesClinical observation, as well as randomized controlled trials, indicated an increasing rate of postoperative cognitive dysfunction (POCD) with increasing depth of general anesthesia. However, the findings are subject to bias due to varying degree of analgesia. In this trial, we compared the rate of POCD between patients receiving light versus high anesthesia while holding analgesia comparable using nerve block.MethodsElderly patients (≧60 years) receiving elective total knee replacement were randomized to receive the surgery under general anesthesia at BIS 40–50 (LOBIS group) or BIS 55–65 (HIBIS group). The femoral nerve and the sciatic nerve were blocked under ultrasonic guidance in all patients before induction. Cognitive performance was assessed with Montreal cognitive assessment (MoCA) at the baseline and 1d, 3d, and 7d after the surgery. POCD was defined by Z score of >1.96 using cross‐reference. The extubation time and recovery time were also compared.ResultsA total of 66 patients were randomized; 60 (n = 30 per group) completed trial as the protocol specified. POCD occurred in six patients (20%) in the LOBIS group vs. in one patient (3.3%) in the HIBIS group (Figure 3, p = .04). In all seven cases, the diagnosis of POCD was based on MoCA assessment on 1d after the surgery. Assessment in 3d and 7d after surgery did not reveal POCD in any case. Extubation time was longer in the LOBIS group (12.16 ± 2.58 vs. 5.77 ± 3.01 min in the HIBIS group (p < .001)). The time of comeback of directional ability was 13.47 ± 3.14 and 6.17 ± 3.23 min in the LOBIS and HIBIS groups, respectively (p < .001).ConclusionsIn elderly patients receiving a total knee replacement, lighter anesthesia could reduce the rate of POCD with complete analgesia during surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.