One of the main challenges for advanced metallic nanoparticles (NPs) supported functional perovskite catalysts is the simultaneous achievement of a high population of NPs with uniform distribution as well as long-lasting high performance. These are also the essential requirements for optimal electrode catalysts used in solid oxide fuel cells and electrolysis cells (SOFCs and SOECs). Herein, we report a facile operando manufacture way that the crystal reconstruction of double perovskite under reducing atmosphere can spontaneously lead to the formation of ordered layered oxygen deficiency and yield segregation of massively and finely dispersed NPs. The real-time observation of this emergent process was performed via an environmental transmission electron microscope. Density functional theory calculations prove that the crystal reconstruction induces the loss of coordinated oxygen surrounding B-site cations, serving as the driving force for steering fast NP growth. The prepared material shows promising capability as an active and stable electrode for SOFCs in various fuels and SOECs for CO2 reduction. The conception exemplified here could conceivably be extended to fabricate a series of supported NPs perovskite catalysts with diverse functionalities.
Chemical deposition is widely used to enhance the performance of perovskite anodes for solid oxide fuel cells (SOFCs). However, the anodes thus produced still have unsatisfactory activity and experience reproducibility problems. For the first time, this paper reports that the in situ exsolution of nano-Ni could be facilitated on Ni-doped (La 0.7 Sr 0.3 )CrO 3 (LSCNi) anodes with A-site deficiency, showing a maximum power density of 460 mW cm À2 in 5000 ppm H 2 S-H 2 compared to only 135 mW cm À2 of fuel cells with stoichiometric LSCNi. Besides, the fuel cell also demonstrates desirable redox stability in sour fuel. The introduction of A-site deficiency can help the formation of highly mobile oxygen vacancies and remarkably enhance the reducibility of Ni nano-particles, thus significantly increasing electronic conductivity and catalytic activity simultaneously. Such fabricated perovskite has the potential to be decorated with diverse nano-active particles for a wide range of applications in industrial fields.
Redox activity has been considered the descriptor of the catalytic performance of transition-metal oxides with the crystal family of ABO 3 perovskites. Although elemental doping is an efficient way to promote their activity for water splitting, most research has been centered only on the influence of doping A/B sites. This work demonstrates that F-anion substitution can make the O p band closer to the Femi level and activate the lattice O forming mobile O*. These features help regulate the lattice O sites in perovskites and thus promote the activity of perovskite oxides for water-splitting reactions.
Oxygen electrocatalysis is at the heart of the emerging energy conversion and storage devices including reversible fuel cells and metal-air batteries. However, replacing the noble-metal-based oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts with affordable and robust alternatives remains challenging to date. Herein, we report a cation-ordered double perovskite oxide, i.e., PrBa 0.85-Ca 0.15 MnFeO 5+δ , with excellent stability and activity in both OER and ORR. The layered crystal structure provides ordered oxygen vacancy channels and a vast amount of surface oxygen defects, while the moderate amount of iron dopant keeps the B-site cations at high oxidation state with optimal e g fillings. Importantly, the DFT calculations along with the advanced TEM analysis verify that the incorporation of Ca at the A-site stabilizes the perovskite structure under potential bias. Such a bifunctional catalyst shows comparable, if not better, activity relative to the state-of-the-art perovskite oxides (e.g., Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ) while demonstrating remarkably enhanced robustness. This work presents a rational approach of designing efficient, robust, and cost-effective perovskite oxide for oxygen electrocatalysis and sheds light on the influences of the crystallographic structure on the catalytic property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.