Artificial photosynthesis is a promising strategy for converting carbon dioxide (CO2) and water (H2O) into fuels and value‐added chemical products. However, photocatalysts usually suffered from low activity and product selectivity due to the sluggish dynamic transfer of photoexcited charge carriers. Herein, we describe anchoring of Ag single atoms on hollow porous polygonal C3N4 nanotubes (PCN) to form the photocatalyst Ag1@PCN with Ag−N3 coordination for CO2 photoreduction using H2O as the reductant. The as‐synthesized Ag1@PCN exhibits a high CO production rate of 0.32 μmol h−1 (mass of catalyst: 2 mg), a high selectivity (>94 %), and an excellent stability in the long term. Experiments and density functional theory (DFT) reveal that the strong metal–support interactions (Ag−N3) favor *CO2 adsorption, *COOH generation and desorption, and accelerate dynamic transfer of photoexcited charge carriers between C3N4 and Ag single atoms, thereby accounting for the enhanced CO2 photoreduction activity with a high CO selectivity. This work provides a deep insight into the important role of strong metal–support interactions in enhancing the photoactivity and CO selectivity of CO2 photoreduction.
Selectively removing the trace amount of ethyne in ethylene is of great significance for the utilization of ethylene in down-stream process. Selective hydrogenation of ethyne to ethylene is of great...
Artificial photosynthesis is a promising strategy for converting carbon dioxide (CO 2 ) and water (H 2 O) into fuels and value-added chemical products. However, photocatalysts usually suffered from low activity and product selectivity due to the sluggish dynamic transfer of photoexcited charge carriers. Herein, we describe anchoring of Ag single atoms on hollow porous polygonal C 3 N 4 nanotubes (PCN) to form the photocatalyst Ag 1 @PCN with AgÀ N 3 coordination for CO 2 photoreduction using H 2 O as the reductant. The assynthesized Ag 1 @PCN exhibits a high CO production rate of 0.32 μmol h À 1 (mass of catalyst: 2 mg), a high selectivity (> 94 %), and an excellent stability in the long term. Experiments and density functional theory (DFT) reveal that the strong metal-support interactions (AgÀ N 3 ) favor *CO 2 adsorption, *COOH generation and desorption, and accelerate dynamic transfer of photoexcited charge carriers between C 3 N 4 and Ag single atoms, thereby accounting for the enhanced CO 2 photoreduction activity with a high CO selectivity. This work provides a deep insight into the important role of strong metal-support interactions in enhancing the photoactivity and CO selectivity of CO 2 photoreduction.
The activation of carbon dioxide (CO2) molecules and separation/transfer of photoinduced charge carriers are two crucial factors influencing the efficiency of CO2 photoreduction. Herein, we report a p-type Bi2Te3/commercial TiO2 (pBT/P25) nanocomposite for enhanced CO2 photoreduction. Upon light irradiation, a temperature gradient formed in pBT induces the Seebeck effect to build a thermoelectric field, which promotes the charge carriers’ separation/transfer. Additionally, pBT with a strong light absorption capacity generates the photothermal effect favoring the activation of CO2 molecules. In addition, the excellent electric conductivity and large work function render pBT an efficient cocatalyst for further improving the charge carriers’ separation/transfer. Owing to the synergistic enhancement effect of pBT on the activation of CO2 molecules and promotion of charge separation/transfer, we achieved the highest CO evolution rate over pBT(2)/P25 of 19.2 μmol·gcat−1·h−1, which was approximately 5.5 times that of bare P25. This work suggests that a thermoelectric material/semiconductor nanocomposite could be developed as an efficient photo-thermo-electro-chemical conversion system for enhanced CO2 reduction via promoting the charge carriers’ separation/transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.