Imbalanced classification has drawn considerable attention in the statistics and machine learning literature. Typically, traditional classification methods often perform poorly when a severely skewed class distribution is observed, not to mention under a high-dimensional longitudinal data structure. Given the ubiquity of big data in modern health research, it is expected that imbalanced classification in disease diagnosis may encounter an additional level of difficulty that is imposed by such a complex data structure. In this article, we propose a nonparametric classification approach for imbalanced data in longitudinal and high-dimensional settings. Technically, the functional principal component analysis is first applied for feature extraction under the longitudinal structure. The univariate exponential loss function coupled with group LASSO penalty is then adopted into the classification procedure in high-dimensional settings. Along with a good improvement in imbalanced classification, our approach provides a meaningful feature selection for interpretation while enjoying a remarkably lower computational complexity. The proposed method is illustrated on the real data application of Alzheimer's disease early detection and its empirical performance in finite sample size is extensively evaluated by simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.